论文标题

在GPU上快速,功能丰富的弱压缩SPH:编码策略和编译器选择

Fast, feature-rich weakly-compressible SPH on GPU: coding strategies and compiler choices

论文作者

Bilotta, Giuseppe, Zago, Vito, Hérault, Alexis, van Ettinger, Hendrik D., Dalrymple, Robert A.

论文摘要

GPUSPH是使用CUDA完全在GPU上运行的弱压缩平滑粒子流体动力学方法的第一个实现。版本5于2018年6月发布,具有对代码的根本重组,为多个功能提供了更结构化的实现,并对大多数重型计算内核进行了专门优化。尽管这些改进导致了可衡量的性能提升(根据测试案例和硬件配置的不同,从15 \%到30 \%),但它也发现了官方CUDA编译器(\ texttt {nvcc})的某些限制,尤其是NVIDIA提供的,尤其是NVIDIA提供的限制。这导致努力支持替代编译器,尤其是Clang,并具有令人惊讶的性能提升。

GPUSPH was the first implementation of the weakly-compressible Smoothed Particle Hydrodynamics method to run entirely on GPU using CUDA. Version 5, released in June 2018, features a radical restructuring of the code, offering a more structured implementation of several features and specialized optimization of most heavy-duty computational kernels. While these improvements have led to a measurable performance boost (ranging from 15\% to 30\% depending on the test case and hardware configuration), it has also uncovered some of the limitations of the official CUDA compiler (\texttt{nvcc}) offered by NVIDIA, especially in regard to developer friendliness. This has led to an effort to support alternative compilers, particularly Clang, with surprising performance gains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源