论文标题

在多模晶格中的多阶高阶拓扑

Multipole higher-order topology in a multimode lattice

论文作者

Mazanov, Maxim, Kupriianov, Anton S., Savelev, Roman S., He, Zuxian, Gorlach, Maxim A.

论文摘要

拓扑的概念对跨越凝结物质,光子学和声学领域的物理学研究产生了深远的影响,并预测了拓扑状态,这些状态在路由和控制各种性质的波浪方面提供了前所未有的多功能性。高阶拓扑绝缘子进一步扩展了这种可能性的大量可能性,以扩展结构维度。在这里,我们提出了一类新型的二维多极高阶高阶绝缘子,该类别是由于在凝结物质系统中赋予旋转轨道偶联机制的单个元原子的退化模式的干扰而产生的。我们证明,该模型具有障碍角模式,不能将其简化为已知的结晶拓扑阶段或常规四极杆绝缘子,在$ C_3 $ -SYMMETRIC的晶格中提供了多极拓扑的第一个示例,具有量化的Octupole矩。晶格的多模性产生了平坦的带和角状态,具有极端定位,从而可以对拓扑模式进行连贯的控制。我们通过组装设计的结构,观察多极拓扑角状态并实验证明其连贯的控制来支持我们的预测。

The concepts of topology have a profound impact on physics research spanning the fields of condensed matter, photonics and acoustics and predicting topological states that provide unprecedented versatility in routing and control of waves of various nature. Higher-order topological insulators further expand this plethora of possibilities towards extended range of structure dimensionalities. Here, we put forward a novel class of two-dimensional multipolar higher-order topological insulators that arise due to the interference of the degenerate modes of the individual meta-atoms generalizing the mechanism of spin-orbit coupling in condensed matter systems. We prove that this model features disorder-robust corner modes and cannot be reduced to the known crystalline topological phases or conventional quadrupole insulators, providing the first example of multipolar topology in a $C_3$-symmetric lattice featuring quantized octupole moment. The multimode nature of the lattice gives rise to flat bands and corner states with extreme localization enabling coherent control of the topological modes. We support our predictions by assembling the designed structure, observing multipolar topological corner states and experimentally demonstrating their coherent control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源