论文标题
具有生成对话网络的知识接地对话数据增强
Knowledge-Grounded Conversational Data Augmentation with Generative Conversational Networks
论文作者
论文摘要
虽然通常可以使用丰富的开放域文本数据,并且可能包括有趣的现象(幽默,讽刺,同理心等),大多数是用于语言处理任务的设计,并且通常采用非交流格式。在这项工作中,我们朝着使用生成的对话网络自动生成对话数据迈出了一步,旨在从可用的语言和知识数据的广度中受益,并培训开放式域社交对话代理。我们使用自动指标和人类评估师在主题聊天数据集上有或没有知识的对话评估我们的方法。我们的结果表明,对于没有知识基础的对话,GCN可以从种子数据中概括,产生新颖的对话,这些对话较小,但更具吸引力,并且对于知识的对话,它可以产生更多以知识为中心,流利和引人入胜的对话。具体而言,我们表明,对于使用10 \%种子数据的开放域对话,我们的方法接近使用100%数据的基线,而对于知识接地的对话,它仅使用1%的数据,关于人类的吸引力,流动性和相关性的1%数据来实现。
While rich, open-domain textual data are generally available and may include interesting phenomena (humor, sarcasm, empathy, etc.) most are designed for language processing tasks, and are usually in a non-conversational format. In this work, we take a step towards automatically generating conversational data using Generative Conversational Networks, aiming to benefit from the breadth of available language and knowledge data, and train open domain social conversational agents. We evaluate our approach on conversations with and without knowledge on the Topical Chat dataset using automatic metrics and human evaluators. Our results show that for conversations without knowledge grounding, GCN can generalize from the seed data, producing novel conversations that are less relevant but more engaging and for knowledge-grounded conversations, it can produce more knowledge-focused, fluent, and engaging conversations. Specifically, we show that for open-domain conversations with 10\% of seed data, our approach performs close to the baseline that uses 100% of the data, while for knowledge-grounded conversations, it achieves the same using only 1% of the data, on human ratings of engagingness, fluency, and relevance.