论文标题

使用神经网络中未解决的太空领域意识的未解决的太空图像中的卫星检测

Satellite Detection in Unresolved Space Imagery for Space Domain Awareness Using Neural Networks

论文作者

Jordan, Jarred, Posada, Daniel, Zuehlke, David, Radulovic, Angelica, Malik, Aryslan, Henderson, Troy

论文摘要

这项工作利用Mobilenetv2卷积神经网络(CNN)快速,移动检测卫星和拒绝恒星,在混乱的未解决的空间图像中。首先,使用合成卫星图像程序中的图像创建自定义数据库,并在“卫星阳性”图像的卫星上标有边界框。然后在此数据库上训练CNN,并通过在由真实望远镜图像构建的外部数据集上检查模型的准确性来验证推理。在此过程中,训练有素的CNN提供了一种快速卫星识别方法,以在基于地面的轨道估计中使用。

This work utilizes a MobileNetV2 Convolutional Neural Network (CNN) for fast, mobile detection of satellites, and rejection of stars, in cluttered unresolved space imagery. First, a custom database is created using imagery from a synthetic satellite image program and labeled with bounding boxes over satellites for "satellite-positive" images. The CNN is then trained on this database and the inference is validated by checking the accuracy of the model on an external dataset constructed of real telescope imagery. In doing so, the trained CNN provides a method of rapid satellite identification for subsequent utilization in ground-based orbit estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源