论文标题
调查$ S $ - 波绑定的州,由两个伪内膜组成
Investigating $S$-wave bound states composed of two pseudoscalar mesons
论文作者
论文摘要
在这项工作中,我们系统地研究了梯子和瞬时近似值的伯特 - 钙板方程的两率介子系统。通过使用包含单粒子交换图的内核来求解Bethe-Salpeter方程,我们发现$ k \ bar {k {k} $,$ dk $,$ b \ bar {k} $,$ d \ bar {d} $ b \ bar {d} $ i = 0 $的系统可以作为界面存在。我们还研究了重型介子($ j/ψ$和$购$)的贡献,我们发现不忽视重型介子交易所的贡献。
In this work, we systematically investigate the two-pseudoscalar meson systems with the Bethe-Salpeter equation in the ladder and instantaneous approximations. By solving the Bethe-Salpeter equation numerically with the kernel containing the one-particle exchange diagrams, we find that the $K\bar{K}$, $DK$, $B\bar{K}$, $D\bar{D}$, $B\bar{B}$, $BD$, $D\bar{K}$, $BK$, and $B\bar{D}$ systems with $I=0$ can exist as bound states. We also study the contributions from heavy meson ($J/ψ$ and $Υ$) exchanges, and we find that the contribution from heavy meson exchange can not be ignored.