论文标题

对于痕量重建问题的平均案例降低(移动)最差的案例减少

Average-Case to (shifted) Worst-Case Reduction for the Trace Reconstruction Problem

论文作者

Rubinstein, Ittai

论文摘要

{\ em intertion-deletion channel}将作为输入为二进制字符串$ x \ in \ {0,1 \}^n $,并输出一个字符串$ \ widetilde {x} $,其中某些位已被删除,而另一些位则随机插入。在{\ em跟踪重建问题}中,在同一输入消息$ x $上给出了许多输出(称为{\ em Traces})的许多输出(称为{\ em Traces}),并要求恢复输入消息。 Nazarov and Peres(Stoc 2017)以及DE,O'Donnell and Serveio(Stoc 2017)表明,可以从$ \ exp(o(n^{1/3}))$ traces traces重建任何字符串$ x $。 Holden,Pemantle,Peres和Zhai(Colt 2018)将用于证明这种上限的技术适应了平均案例痕量重建的算法,其样品复杂性为$ \ exp(O(\ log^{1/3} n)))$。但是,尚不清楚如何更普遍地应用其技术,尤其是对于最近的$ \ exp(\ widetilde {o}(n^{1/5})$的最差案例上限)$ chase(stoc 2021)用于删除范围。 我们证明,从平均情况到类似于最坏情况的问题的较小实例的总体降低。使用这种降低和对Chase的界限的概括,我们构建了一个改进的平均案例算法,其样品复杂性为$ \ exp(\ widetilde {o}(\ log^{1/5} n))$。此外,我们还表明,Chase的上限也适用于插入消耗通道。

The {\em insertion-deletion channel} takes as input a binary string $x \in\{0, 1\}^n$, and outputs a string $\widetilde{x}$ where some of the bits have been deleted and others inserted independently at random. In the {\em trace reconstruction problem}, one is given many outputs (called {\em traces}) of the insertion-deletion channel on the same input message $x$, and asked to recover the input message. Nazarov and Peres (STOC 2017), and De, O'Donnell and Servedio (STOC 2017) showed that any string $x$ can be reconstructed from $\exp(O(n^{1/3}))$ traces. Holden, Pemantle, Peres and Zhai (COLT 2018) adapt the techniques used to prove this upper bound, to an algorithm for the average-case trace reconstruction with a sample complexity of $\exp(O(\log^{1/3} n))$. However, it is not clear how to apply their techniques more generally and in particular for the recent worst-case upper bound of $\exp(\widetilde{O}(n^{1/5}))$ shown by Chase (STOC 2021) for the deletion-channel. We prove a general reduction from the average-case to smaller instances of a problem similar to worst-case. Using this reduction and a generalization of Chase's bound, we construct an improved average-case algorithm with a sample complexity of $\exp(\widetilde{O}(\log^{1/5} n))$. Additionally, we show that Chase's upper-bound holds for the insertion-deletion channel as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源