论文标题

主动监督实例分割

Active Pointly-Supervised Instance Segmentation

论文作者

Tang, Chufeng, Xie, Lingxi, Zhang, Gang, Zhang, Xiaopeng, Tian, Qi, Hu, Xiaolin

论文摘要

昂贵注释的要求是培训良好的实例细分模型的重大负担。在本文中,我们提出了一个经济活跃的学习环境,称为主动监督实例细分(API),该设置从框级注释开始,并迭代地在盒子内划分一个点,并询问它是否属于对象。 API的关键是找到有限的注释预算以最大程度地提高细分精度的最佳点。我们制定了此设置,并提出了几种基于不确定性的采样策略。与其他学习策略相比,使用这些策略开发的模型可以在具有挑战性的MS-Coco数据集上获得一致的性能增长。结果表明,API整合了主动学习和基于点的监督的优势,是标签有效实例分割的有效学习范式。

The requirement of expensive annotations is a major burden for training a well-performed instance segmentation model. In this paper, we present an economic active learning setting, named active pointly-supervised instance segmentation (APIS), which starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object. The key of APIS is to find the most desirable points to maximize the segmentation accuracy with limited annotation budgets. We formulate this setting and propose several uncertainty-based sampling strategies. The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset, compared against other learning strategies. The results suggest that APIS, integrating the advantages of active learning and point-based supervision, is an effective learning paradigm for label-efficient instance segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源