论文标题
低马赫数晶格玻尔兹曼模型用于湍流燃烧:限制的几何形状流动
Low Mach number lattice Boltzmann model for turbulent combustion: flow in confined geometries
论文作者
论文摘要
在本文中,在早期作品中开发的低MACH热热压缩流的混合晶格Boltzmann/有限差异求解器扩展到了涉及湍流和复杂几何形状的更现实和具有挑战性的配置。与以前的贡献相比,这里的主要新颖性是应用更强大的碰撞操作员的应用,大大扩展了原始单个松弛时间模型的稳定性,并促进了较大的雷诺数数量流量模拟。此外,还添加了亚电网模型和增厚火焰方法,以便对复杂几何形状中的湍流反应流量进行有效的大型涡流模拟。该强大的求解器结合了边界条件的适当处理,用于模拟两种配置:在具有多个障碍物的2-D燃烧室中的火焰前局传播,以及3-D Preccinsta漩涡燃烧器。与直接数值和大型涡流仿真结果相比,2-D配置中火焰表面的时间演变表现出非常好的一致性。首先使用两种不同的网格分辨率在冷流动的情况下首先进行preccinsta燃烧器的模拟。与实验数据的比较显示,即使在较低分辨率下,也可以很好地达成一致性。然后,使用2步化学和多组分传输/热力学的模型,以在类似于先前报道的实验/数值研究的操作条件下模拟燃烧器,$ ϕ $ = 0.83。与可用的大型涡流仿真结果以及实验数据相比,结果再次非常好,这表明了混合求解器的出色性能。
A hybrid lattice Boltzmann/finite-difference solver for low Mach thermo-compressible flows developed in earlier works is extended to more realistic and challenging configurations involving turbulence and complex geometries in the present article. The major novelty here as compared to previous contributions is the application of a more robust collision operator, considerably extending the stability of the original single relaxation time model and facilitating larger Reynolds number flow simulations. Additionally, a subgrid model and the thickened flame approach have also been added allowing for efficient large eddy simulations of turbulent reactive flows in complex geometries. This robust solver, in combination with appropriate treatment of boundary conditions, is used to simulate combustion in two configurations: flame front propagation in a 2-D combustion chamber with several obstacles, and the 3-D PRECCINSTA swirl burner. Time evolution of the flame surface in the 2-D configuration shows very good agreement compared to direct numerical and large eddy simulation results available in the literature. The simulation of the PRECCINSTA burner is first performed in the case of cold flow using two different grid resolutions. Comparisons with experimental data reveal very good agreement even at lower resolution. The model is then used, with a 2-step chemistry and multi-component transport/thermodynamics, to simulate the combustor at operating conditions similar to previously reported experimental/numerical studies for $ϕ$=0.83. Results are again in very good agreement compared with available large eddy simulation results as well as experimental data, demonstrating the excellent performance of the hybrid solver.