论文标题

量子状态兼容性问题的最大熵方法

Maximum entropy methods for quantum state compatibility problems

论文作者

Hou, Shi-Yao, Wu, Zipeng, Zeng, Jinfeng, Cao, Ningping, Cao, Chenfeng, Li, Youning, Zeng, Bei

论文摘要

在量子信息科学和应用的许多方面,从不完整的信息中推断出量子系统是一个常见问题,其中最大熵(Maxent)的原理起着重要作用。量子状态兼容性问题询问是否存在与给定测量结果兼容的密度矩阵$ρ$。这样的兼容性问题可以自然地表达为半决赛编程(SDP),该编程可以直接搜索$ρ$的存在。但是,对于大型系统尺寸,由于需要太多参数,因此很难直接代表$ρ$。在这项工作中,我们将Maxent应用于解决各种量子状态兼容性问题,包括量子边缘问题。 Maxent方法的直接优势是它仅需要通过相对较少的参数表示$ρ$,这正是所测量的运算符数。此外,在不兼容的测量结果的情况下,我们的方法将进一步返回证人,该证人是兼容集的支持超平面。我们的方法具有明显的几何含义,可以通过混合量子古典算法有效地计算。

Inferring a quantum system from incomplete information is a common problem in many aspects of quantum information science and applications, where the principle of maximum entropy (MaxEnt) plays an important role. The quantum state compatibility problem asks whether there exists a density matrix $ρ$ compatible with some given measurement results. Such a compatibility problem can be naturally formulated as a semidefinite programming (SDP), which searches directly for the existence of a $ρ$. However, for large system dimensions, it is hard to represent $ρ$ directly, since it needs too many parameters. In this work, we apply MaxEnt to solve various quantum state compatibility problems, including the quantum marginal problem. An immediate advantage of the MaxEnt method is that it only needs to represent $ρ$ via a relatively small number of parameters, which is exactly the number of the operators measured. Furthermore, in case of incompatible measurement results, our method will further return a witness that is a supporting hyperplane of the compatible set. Our method has a clear geometric meaning and can be computed effectively with hybrid quantum-classical algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源