论文标题
反事实推理,用于分发多模式分析
Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment Analysis
论文作者
论文摘要
关于多模式情感分析的现有研究在很大程度上依赖文本方式,不可避免地会引起文本单词和情感标签之间的虚假相关性。这极大地阻碍了模型的概括能力。为了解决这个问题,我们定义了分发(OOD)多模式分析的任务。该任务旨在估计和减轻文本方式对强大概括的不良影响。为此,我们拥抱因果推断,该因果关系通过因果图来检查因果关系。从图中,我们发现虚假相关性归因于文本模式对模型预测的直接影响,而间接相关性通过考虑多模式语义来更可靠。受此启发的启发,我们设计了一个模型不合时宜的反事实框架,用于多模式分析,该框架通过额外的文本模型捕获文本模式的直接效果,并通过多模型估算间接的模型。在推断期间,我们首先通过反事实推断估算直接效应,然后从所有方式的总效应中减去以获得可靠预测的间接效应。广泛的实验显示了我们提出的框架的卓越有效性和概括能力。
Existing studies on multimodal sentiment analysis heavily rely on textual modality and unavoidably induce the spurious correlations between textual words and sentiment labels. This greatly hinders the model generalization ability. To address this problem, we define the task of out-of-distribution (OOD) multimodal sentiment analysis. This task aims to estimate and mitigate the bad effect of textual modality for strong OOD generalization. To this end, we embrace causal inference, which inspects the causal relationships via a causal graph. From the graph, we find that the spurious correlations are attributed to the direct effect of textual modality on the model prediction while the indirect one is more reliable by considering multimodal semantics. Inspired by this, we devise a model-agnostic counterfactual framework for multimodal sentiment analysis, which captures the direct effect of textual modality via an extra text model and estimates the indirect one by a multimodal model. During the inference, we first estimate the direct effect by the counterfactual inference, and then subtract it from the total effect of all modalities to obtain the indirect effect for reliable prediction. Extensive experiments show the superior effectiveness and generalization ability of our proposed framework.