论文标题
启用Wigner-Molocularization动态核场编程
Wigner-molecularization-enabled dynamic nuclear field programming
论文作者
论文摘要
多电体半导体量子点(QD)提供了一个新的平台,以研究有限量子系统中库仑相关性的作用及其对多体能量光谱的影响。一个例子是形成了相互作用驱动的Wigner分子(WMS)的空间局部电子状态。尽管Wigner分子已通过真实的成像和相干光谱证实,但与环境的强相关状态的开放系统动力学尚未得到充分了解。在这里,我们证明了对GAAS双QD中人工三电子WM和核环境之间自旋转移的有效控制。利用了通过Wigner分子实现的自旋多重态的基于Landau-Zener的基于Landau-Zener扫描的极化序列和低洼的自旋多重态。每个电子旋转翻转的有效极化速率为2.58 $ h \ cdotp khz \ cdOtp(g^* \cdotpμ_b)^{ - 1} $,因此,通过受控的单电子隧道来实现可编程的核极化。结合对自旋态的相干控制,我们可以控制核场的幅度,极性和位点依赖性。证明在非交互制度中无法实现相同的控制水平。因此,我们确认了WM的多重自旋结构,为新兴新兴相关的电子状态的主动控制铺平了道路,以应用于中学环境工程。
Multielectron semiconductor quantum dots (QDs) provide a novel platform to study the role of Coulomb correlations in finite quantum systems and their impact on many-body energy spectra. An example is the formation of interaction-driven, spatially localized electron states of Wigner molecules (WMs). Although Wigner molecularization has been confirmed by real-space imaging and coherent spectroscopy, the open system dynamics of the strongly-correlated states with the environment are not yet well understood. Here, we demonstrate efficient control of spin transfer between an artificial three-electron WM and the nuclear environment in a GaAs double QD. A Landau-Zener sweep-based polarization sequence and low-lying anti-crossings of spin multiplet states enabled by Wigner molecularization are utilized. An efficient polarization rate of 2.58 $h \cdotp kHz \cdotp (g^* \cdotp μ_B)^{-1}$ per electron spin flip and, consequently, programmable nuclear polarization by controlled single-electron tunneling are achieved. Combined with coherent control of spin states, we achieve control of magnitude, polarity, and site dependence of the nuclear field. It is demonstrated that the same level of control cannot be achieved in the non-interacting regime. Thus, we confirm the multiplet spin structure of a WM, paving the way for active control of newly emerging correlated electron states for application in mesoscopic environment engineering.