论文标题

多层网络的紧密集中算法

Closeness Centrality Algorithms For Multilayer Networks

论文作者

Pavel, Hamza Reza, Santra, Abhishek, Chakravarthy, Sharma

论文摘要

简单图的中心度度量明确定义,并且每个主内存算法都存在。简单的图不足以建模具有多个实体和关系的复杂数据集。多层网络(MLN)已被证明更适合,但是直接在MLN上进行中心性计算的算法很少。它们使用布尔和 /或操作员将其转换为简单的图表,以计算中心性,这不仅效率低下,而且会造成结构和语义的丧失。在本文中,我们提出了使用基于新型的基于解耦的方法直接在MLN上计算接近度的算法。使用了MLN的层(或简单图)的个别结果,并开发了组成函数来计算MLN的中心性。挑战是准确有效地执行此操作。但是,由于这些算法没有MLN的完整信息,因此计算全球措施(例如接近性中心性)是一个挑战。因此,这些算法依赖于直觉中得出的启发式方法。优势在于,这种方法将自己适合并行性,并且与传统方法相比更有效。我们提出了两个具有组成的启发式方法,并在具有多种特征的大量合成和现实图表上实验验证了准确性和效率。

Centrality measures for simple graphs are well-defined and several main-memory algorithms exist for each. Simple graphs are not adequate for modeling complex data sets with multiple entities and relationships. Multilayer networks (MLNs) have been shown to be better suited, but there are very few algorithms for centrality computation directly on MLNs. They are converted (aggregated or collapsed) to simple graphs using Boolean AND or OR operators to compute centrality, which is not only inefficient but incurs a loss of structure and semantics. In this paper, we propose algorithms that compute closeness centrality on an MLN directly using a novel decoupling-based approach. Individual results of layers (or simple graphs) of an MLN are used and a composition function developed to compute the centrality for the MLN. The challenge is to do this accurately and efficiently. However, since these algorithms do not have complete information of the MLN, computing a global measure such as closeness centrality is a challenge. Hence, these algorithms rely on heuristics derived from intuition. The advantage is that this approach lends itself to parallelism and is more efficient compared to the traditional approach. We present two heuristics for composition and experimentally validate accuracy and efficiency on a large number of synthetic and real-world graphs with diverse characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源