论文标题
直接构造具有柔性长度和较大零相关区的交叉Z平组集合
A Direct Construction of Cross Z-Complementary Sets with Flexible Lengths and Large Zero Correlation Zone
论文作者
论文摘要
这封信提出了具有柔性长度和较大的零相关区(ZCZ)的跨Z平组集合(CZCS)的直接结构。 CZCS是交叉Z-平均对(CZCP)的扩展。 CZCP的最大ZCZ宽度是其序列长度的一半。在这封信中,提出了大量组成序列的CZCSS基于广义的基于布尔函数的构建,并提出了$ 2/3 $的ZCZ比率。对于整数$ m $和$δ$,拟议的构造产生的CZCs的长度为$ 2^{M-1}+2^δ$($ 0 \ lequqΔ<m-1,m \ geq 4 $),其中奇数甚至可以获得CZC的长度。此外,构造的CZC还具有相同长度的互补集。最后,将拟议的建筑与现有作品进行了比较。
This letter proposes a direct construction for cross Z-complementary sets (CZCSs) with flexible lengths and a large zero correlation zone (ZCZ). CZCS is an extension of the cross Z-complementary pair (CZCP). The maximum possible ZCZ width of a CZCP is half of its sequence length. In this letter, for the first time, a generalized Boolean function based construction of CZCSs with a large number of constituent sequences and a ZCZ ratio of $2/3$ is presented. For integers $m$ and $δ$, the proposed construction produces CZCS with length expressed as $2^{m-1}+2^δ$ ($0 \leq δ<m-1,m\geq 4$), where both odd and even lengths CZCS can be obtained. Additionally, the constructed CZCS also feature a complementary set of the same length. Finally, the proposed construction is compared with the existing works.