论文标题
N-LIMB:有效形态设计的神经肢体优化
N-LIMB: Neural Limb Optimization for Efficient Morphological Design
论文作者
论文摘要
机器人完成任务的能力在很大程度上取决于其物理设计。但是,确定最佳的物理设计及其相应的控制策略本质上是具有挑战性的。选择链接的数量,类型以及如何在组合设计空间中产生连接的自由,以及对该空间中任何设计的评估都需要得出其最佳控制器。在这项工作中,我们提出了N-LIMB,这是一种在大量形态上优化机器人设计和控制的有效方法。我们框架的核心是一种通用的设计条件控制政策,能够控制各种设计集。这项政策通过允许在设计中的经验转移并降低评估新设计的成本,从而大大提高了我们方法的样本效率。我们训练这项政策,以最大限度地提高预期回报,而在设计的分布中,该政策同时更新为普遍政策下的高性能设计。这样,我们的方法将围绕高性能设计的设计分配和一个控制器融合,该设计有效地对这些设计进行了微调。我们在各种地形的一系列运动任务上展示了我们方法的潜力,并展示了发现小说和高性能的设计控制对。
A robot's ability to complete a task is heavily dependent on its physical design. However, identifying an optimal physical design and its corresponding control policy is inherently challenging. The freedom to choose the number of links, their type, and how they are connected results in a combinatorial design space, and the evaluation of any design in that space requires deriving its optimal controller. In this work, we present N-LIMB, an efficient approach to optimizing the design and control of a robot over large sets of morphologies. Central to our framework is a universal, design-conditioned control policy capable of controlling a diverse sets of designs. This policy greatly improves the sample efficiency of our approach by allowing the transfer of experience across designs and reducing the cost to evaluate new designs. We train this policy to maximize expected return over a distribution of designs, which is simultaneously updated towards higher performing designs under the universal policy. In this way, our approach converges towards a design distribution peaked around high-performing designs and a controller that is effectively fine-tuned for those designs. We demonstrate the potential of our approach on a series of locomotion tasks across varying terrains and show the discovery novel and high-performing design-control pairs.