论文标题

量子网络中最大化纠缠路由率:近似算法

Maximizing Entanglement Routing Rate in Quantum Networks: Approximation Algorithms

论文作者

Nguyen, Tu N., Nguyen, Dung H. P., Pham, Dang H., Liu, Bing-Hong, Nguyen, Hoa N.

论文摘要

从传统的网络系统到新颖的量子网络将有一个快节奏的转变,这些量子网络得到了量子纠缠和传送,即量子时代的关键技术,以实现在Internet的下一代中的有安全数据传输。尽管有这一前景,但不能立即进行迁移到量子网络,尤其是在量子路由方面。在本文中,我们研究了最大化的纠缠路由率(MERR)问题。特别是,给定一组需求,我们尝试确定量子网络中最大需求数量的纠缠路由路径,同时满足网络的忠诚度。我们首先使用整数线性编程(ILP)模型来制定MERR问题,以捕获网络中所有需求的流量专利。然后,我们利用ILP的放松理论来设计两种有效的算法,包括HBRA和RRA,具有可证明的目标函数的近似值。为了应对大规模网络中组合优化问题的挑战,我们还提出了基于路径长度的方法(PLBA)来解决MERR问题。使用仿真和开放量子网络模拟器平台来进行现实世界拓扑和交通矩阵进行实验,我们评估算法的性能,并显示最大化纠缠路由率的成功。

There will be a fast-paced shift from conventional network systems to novel quantum networks that are supported by the quantum entanglement and teleportation, key technologies of the quantum era, to enable secured data transmissions in the next-generation of the Internet. Despite this prospect, migration to quantum networks cannot be done at once, especially on the aspect of quantum routing. In this paper, we study the maximizing entangled routing rate (MERR) problem. In particular, given a set of demands, we try to determine entangled routing paths for the maximum number of demands in the quantum network while meeting the network's fidelity. We first formulate the MERR problem using an integer linear programming (ILP) model to capture the traffic patent for all demands in the network. We then leverage the theory of relaxation of ILP to devise two efficient algorithms including HBRA and RRA with provable approximation ratios for the objective function. To deal with the challenge of the combinatorial optimization problem in big scale networks, we also propose the path-length-based approach (PLBA) to solve the MERR problem. Using both simulations and an open quantum network simulator platform to conduct experiments with real-world topologies and traffic matrices, we evaluate the performance of our algorithms and show up the success of maximizing entangled routing rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源