论文标题
同构的度量平均维度的水平集的密度
Density of the level sets of the metric mean dimension for homeomorphisms
论文作者
论文摘要
令$ n $为$ n $ dimensional compact riemannian歧管,带有$ n \ geq 2 $。在本文中,我们证明,对于[0,n] $中的任何$α\,由$ n $上的同构的集合组成的集合,$ n $等于$α$,$ \ text {hom}(hom}(n)$,等于$α$。更普遍地,给定$α,β\在[0,n] $中,$α\ leqβ$,我们显示的集合由$ n $的同构型组成,较低的度量平均尺寸等于$α$,高等于$α$,上的公制尺寸等于$β$,等于$β$在$ \ text {hom}(n hom)中是密集的。此外,我们还提供证据,表明等同于$ n $的同构同构的集合在$ \ text {hom}(n)$中是残留的。
Let $N$ be an $n$-dimensional compact riemannian manifold, with $n\geq 2$. In this paper, we prove that for any $α\in [0,n]$, the set consisting of homeomorphisms on $N$ with lower and upper metric mean dimensions equal to $α$ is dense in $\text{Hom}(N)$. More generally, given $α,β\in [0,n]$, with $α\leq β$, we show the set consisting of homeomorphisms on $N$ with lower metric mean dimension equal to $α$ and upper metric mean dimension equal to $β$ is dense in $\text{Hom}(N)$. Furthermore, we also give a proof that the set of homeomorphisms with upper metric mean dimension equal to $n$ is residual in $\text{Hom}(N)$.