论文标题
两型式车辆的强大优化框架和无人用的路由后,污点后人道主义物流操作
A Robust Optimization Framework for Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Logistics Operations
论文作者
论文摘要
在灾难期间和之后提供急救和其他用品(例如Epi-Pens,医疗用品,干粮,水)总是具有挑战性的。当运输,权力和通信网络失败时,这些操作的复杂性会增加,使人们陷入困境,无法传达其位置和需求。未经自动驾驶汽车等新兴技术的出现可以帮助人道主义物流提供者在运输网络失败后到达滞留的人群。但是,由于电信基础设施的失败,对紧急援助的需求可能会变得不确定。为了应对通过失败的基础设施网络向被困人口提供紧急援助的挑战,我们为两次Echelon车辆路由问题提出了一个新颖的健壮计算框架,该框架使用未驾驶的自动驾驶汽车或无人机进行交付。我们将问题作为两阶段的强大优化模型来处理需求不确定性。然后,我们为给定的一组卡车和无人机路线提出了一种最差的需求场景生成的列和约束生成方法。此外,我们开发了一种启发的分解方案,该方案受柱生成方法的启发,用于启发式为一组需求方案生成无人机路线。最后,我们将启发式分解方案结合在柱状生成方法中,以确定卡车和无人机的稳健路线,服务受影响社区的时间以及交付的援助材料的数量。为了验证我们提出的计算框架,我们使用模拟数据集,旨在在2017年玛丽亚飓风过后在波多黎各的不同地区重新创建紧急援助请求。
Providing first aid and other supplies (e.g., epi-pens, medical supplies, dry food, water) during and after a disaster is always challenging. The complexity of these operations increases when the transportation, power, and communications networks fail, leaving people stranded and unable to communicate their locations and needs. The advent of emerging technologies like uncrewed autonomous vehicles can help humanitarian logistics providers reach otherwise stranded populations after transportation network failures. However, due to the failures in telecommunication infrastructure, demand for emergency aid can become uncertain. To address the challenges of delivering emergency aid to trapped populations with failing infrastructure networks, we propose a novel robust computational framework for a two-echelon vehicle routing problem that uses uncrewed autonomous vehicles, or drones, for the deliveries. We formulate the problem as a two-stage robust optimization model to handle demand uncertainty. Then, we propose a column-and-constraint generation approach for worst-case demand scenario generation for a given set of truck and drone routes. Moreover, we develop a decomposition scheme inspired by the column generation approach to heuristically generate drone routes for a set of demand scenarios. Finally, we combine the heuristic decomposition scheme within the column-andconstraint generation approach to determine robust routes for both trucks and drones, the time that affected communities are served, and the quantities of aid materials delivered. To validate our proposed computational framework, we use a simulated dataset that aims to recreate emergency aid requests in different areas of Puerto Rico after Hurricane Maria in 2017.