论文标题

光场成像的单图超分辨率模型中的子孔径适应

Sub-Aperture Feature Adaptation in Single Image Super-resolution Model for Light Field Imaging

论文作者

Kar, Aupendu, Nehra, Suresh, Mukhopadhyay, Jayanta, Biswas, Prabir Kumar

论文摘要

随着商用光场(LF)摄像机的可用性,LF成像已成为计算摄影中的启动技术。但是,由于空间和角度信息的固有多路复用,在基于商业微杆的LF相机中,空间分辨率受到了显着限制。因此,它成为光场摄像头其他应用的主要瓶颈。本文提出了一个预处理的单图像超级分辨率(SISR)网络中的适应模块,以利用强大的SISR模型,而不是使用高度工程的光场成像域特有的超级分辨率模型。自适应模块由子光圈移位块和融合块组成。它是SISR网络中的一种适应性,可以进一步利用LF图像中的空间和角度信息以提高超级分辨率性能。实验验证表明,所提出的方法的表现优于现有的光场超级分辨率算法。与量表因子2的相同验证的SISR模型相比,所有数据集的PSNR增益超过1 dB,而PSNR对于比例因子4的增长率为0.6至1 dB。

With the availability of commercial Light Field (LF) cameras, LF imaging has emerged as an up and coming technology in computational photography. However, the spatial resolution is significantly constrained in commercial microlens based LF cameras because of the inherent multiplexing of spatial and angular information. Therefore, it becomes the main bottleneck for other applications of light field cameras. This paper proposes an adaptation module in a pretrained Single Image Super Resolution (SISR) network to leverage the powerful SISR model instead of using highly engineered light field imaging domain specific Super Resolution models. The adaption module consists of a Sub aperture Shift block and a fusion block. It is an adaptation in the SISR network to further exploit the spatial and angular information in LF images to improve the super resolution performance. Experimental validation shows that the proposed method outperforms existing light field super resolution algorithms. It also achieves PSNR gains of more than 1 dB across all the datasets as compared to the same pretrained SISR models for scale factor 2, and PSNR gains 0.6 to 1 dB for scale factor 4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源