论文标题

低复杂性,低概率模式和算法概率应用的后果

Low complexity, low probability patterns and consequences for algorithmic probability applications

论文作者

Alaskandarani, Mohamed, Dingle, Kamaludin

论文摘要

开发新的估计概率的方法对于科学,统计和工程可能很有价值。通过考虑不同输出模式的信息内容,最近调用算法信息理论的工作表明,基于模式复杂性的先验概率预测可以在广泛的输入输出图中进行。这些算法的概率预测不取决于对产生方式或历史统计数据的详细知识。尽管定量准确,但这些预测的主要弱点是它们是在模式的概率上给出的,但是许多低复杂性,低概率模式发生,上限的上限几乎没有预测值。在这里,我们通过查看示例图,即有限的状态传感器,自然时间序列数据,RNA分子结构和多项式曲线来研究这种低复杂性,低概率现象。一些导致复杂性低,概率低的机制被确定,我们认为应该将这种行为视为现实世界算法概率研究中的默认性。此外,我们研究了算法概率的某些应用,并讨论了低复杂性,低概率模式的一些含义,包括物理和生物学简单性,先验概率预测,所罗门诺夫归纳和OCCAM的Razor,机器学习和密码猜测。

Developing new ways to estimate probabilities can be valuable for science, statistics, and engineering. By considering the information content of different output patterns, recent work invoking algorithmic information theory has shown that a priori probability predictions based on pattern complexities can be made in a broad class of input-output maps. These algorithmic probability predictions do not depend on a detailed knowledge of how output patterns were produced, or historical statistical data. Although quantitatively fairly accurate, a main weakness of these predictions is that they are given as an upper bound on the probability of a pattern, but many low complexity, low probability patterns occur, for which the upper bound has little predictive value. Here we study this low complexity, low probability phenomenon by looking at example maps, namely a finite state transducer, natural time series data, RNA molecule structures, and polynomial curves. Some mechanisms causing low complexity, low probability behaviour are identified, and we argue this behaviour should be assumed as a default in the real world algorithmic probability studies. Additionally, we examine some applications of algorithmic probability and discuss some implications of low complexity, low probability patterns for several research areas including simplicity in physics and biology, a priori probability predictions, Solomonoff induction and Occam's razor, machine learning, and password guessing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源