论文标题

Secretgen:通过分配歧视对预训练模型的隐私恢复

SecretGen: Privacy Recovery on Pre-Trained Models via Distribution Discrimination

论文作者

Yuan, Zhuowen, Wu, Fan, Long, Yunhui, Xiao, Chaowei, Li, Bo

论文摘要

通过使用预训练模型的转移学习已成为机器学习社区的增长趋势。因此,在线发布了许多预训练的模型,以促进进一步的研究。但是,它引起了人们对这些预训练模型是否会泄露其培训数据隐私敏感信息的广泛担忧。因此,在这项工作中,我们旨在回答以下问题:“我们可以从这些预训练的模型中有效恢复私人信息吗?检索这种敏感信息的足够条件是什么?”我们首先探索不同的统计信息,这些信息可以区分私人培训分布与其他分布。根据我们的观察,我们提出了一个新颖的私人数据重建框架Secretgen,以有效地恢复私人信息。与以前可以恢复私人数据的方法与目标恢复实例的真实预测相比,SecretGen不需要此类先验知识,从而使其更加实用。我们在不同的方案下对不同数据集进行了广泛的实验,以将Secretgen与其他基线进行比较,并提供系统的基准,以更好地了解不同的辅助信息和优化操作的影响。我们表明,如果没有关于真实类预测的先验知识,SecretGen就能恢复具有相似性能的私人数据,与利用此类先验知识的私人数据相比。如果给出了先验知识,SecretGen将显着优于基线方法。我们还提出了几个定量指标,以进一步量化预训练模型的隐私脆弱性,这将有助于对对隐私敏感的应用程序进行模型选择。我们的代码可在以下网址提供:https://github.com/ai-secure/secretgen。

Transfer learning through the use of pre-trained models has become a growing trend for the machine learning community. Consequently, numerous pre-trained models are released online to facilitate further research. However, it raises extensive concerns on whether these pre-trained models would leak privacy-sensitive information of their training data. Thus, in this work, we aim to answer the following questions: "Can we effectively recover private information from these pre-trained models? What are the sufficient conditions to retrieve such sensitive information?" We first explore different statistical information which can discriminate the private training distribution from other distributions. Based on our observations, we propose a novel private data reconstruction framework, SecretGen, to effectively recover private information. Compared with previous methods which can recover private data with the ground true prediction of the targeted recovery instance, SecretGen does not require such prior knowledge, making it more practical. We conduct extensive experiments on different datasets under diverse scenarios to compare SecretGen with other baselines and provide a systematic benchmark to better understand the impact of different auxiliary information and optimization operations. We show that without prior knowledge about true class prediction, SecretGen is able to recover private data with similar performance compared with the ones that leverage such prior knowledge. If the prior knowledge is given, SecretGen will significantly outperform baseline methods. We also propose several quantitative metrics to further quantify the privacy vulnerability of pre-trained models, which will help the model selection for privacy-sensitive applications. Our code is available at: https://github.com/AI-secure/SecretGen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源