论文标题

treeketchnet:从草图到3D树参数生成

TreeSketchNet: From Sketch To 3D Tree Parameters Generation

论文作者

Manfredi, Gilda, Capece, Nicola, Erra, Ugo, Gruosso, Monica

论文摘要

即使是计算机图形专家(CG)的专家,对非线性对象的3D建模也是一个挑战。对象参数从程式化的草图中的外推是一项非常复杂且繁琐的任务。在本研究中,我们提出了一个经纪人系统,该系统在建模器和3D建模软件之间进行了介导,并可以将树的样式绘图转换为完整的3D模型。输入草图不需要准确或详细,只需要代表建模者希望对3D模型的树的基本轮廓。我们的方法基于定义明确的深神经网络(DNN)体系结构,我们称为treeketchnet(TSN),基于卷积,并能够生成Weber和Penn参数,这些参数可以通过建模软件来解释以生成从简单草图开始的树的3D模型。培训数据集由合成生成的\ revision {(sg)}草图组成,这些草图与由专用搅拌器建模软件附加组件生成的Weber-Penn参数相关。通过使用合成和手工制作的草图测试TSN来证明所提出方法的精度。最后,我们通过评估预测参数与几个区别特征的相干性,对我们的结果进行定性分析。

3D modeling of non-linear objects from stylized sketches is a challenge even for experts in Computer Graphics (CG). The extrapolation of objects parameters from a stylized sketch is a very complex and cumbersome task. In the present study, we propose a broker system that mediates between the modeler and the 3D modelling software and can transform a stylized sketch of a tree into a complete 3D model. The input sketches do not need to be accurate or detailed, and only need to represent a rudimentary outline of the tree that the modeler wishes to 3D-model. Our approach is based on a well-defined Deep Neural Network (DNN) architecture, we called TreeSketchNet (TSN), based on convolutions and able to generate Weber and Penn parameters that can be interpreted by the modelling software to generate a 3D model of a tree starting from a simple sketch. The training dataset consists of Synthetically-Generated \revision{(SG)} sketches that are associated with Weber-Penn parameters generated by a dedicated Blender modelling software add-on. The accuracy of the proposed method is demonstrated by testing the TSN with both synthetic and hand-made sketches. Finally, we provide a qualitative analysis of our results, by evaluating the coherence of the predicted parameters with several distinguishing features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源