论文标题
通过中子散射高达25.9 T
Investigating field-induced magnetic order in Han Purple by neutron scattering up to 25.9 T
论文作者
论文摘要
bacusi $ _2 $ o $ _6 $是一个准二维(2D)量子抗铁磁铁,其中包含三种不同类型的堆叠的,方形的双层双层携带旋转1/2二聚体。尽管在过去的二十年中对该化合物进行了广泛的研究,但关闭二聚体自旋间隙并诱导超过23 t的磁性磁场所需的临界磁场必须排除在任何类型的中子散射研究中。但是,柏林Helmholtz-Zentrum的HFM/EXER仪器在最高25.9 T的磁场上使这成为可能。因此,我们使用HFM/EXED来研究了田间引起的有序阶段,特别是寻找来自分层结构和不同毛线类型的Quasi-2D物理学。从中子衍射数据中,我们确定了磁性参数对磁场和温度的全局依赖性,发现与3D量子临界缩放一致的形式。我们推断出Bacusi $ _2 $ o $ _6 $的准2D相互作用和不均匀分层不足以诱导2D物理学的标志。根据中子光谱数据,我们测量了强烈的Zeeman-Split磁激励的分散体,与Bacusi $ _2 $ o $ o $ _6 $的零视场相互作用参数找到了良好的一致性。我们得出的结论是,HFM/EXED允许将中子散射技术应用于高于20 t的场范围,尤其是在田间诱导的磁量子相变的研究中,尤其是打开了新的视野。
BaCuSi$_2$O$_6$ is a quasi-two-dimensional (2D) quantum antiferromagnet containing three different types of stacked, square-lattice bilayer hosting spin-1/2 dimers. Although this compound has been studied extensively over the last two decades, the critical applied magnetic field required to close the dimer spin gap and induce magnetic order, which exceeds 23 T, has to date precluded any kind of neutron scattering investigation. However, the HFM/EXED instrument at the Helmholtz-Zentrum Berlin made this possible at magnetic fields up to 25.9 T. Thus we have used HFM/EXED to investigate the field-induced ordered phase, in particular to look for quasi-2D physics arising from the layered structure and from the different bilayer types. From neutron diffraction data, we determined the global dependence of the magnetic order parameter on both magnetic field and temperature, finding a form consistent with 3D quantum critical scaling; from this we deduce that the quasi-2D interactions and nonuniform layering of BaCuSi$_2$O$_6$ are not anisotropic enough to induce hallmarks of 2D physics. From neutron spectroscopy data, we measured the dispersion of the strongly Zeeman-split magnetic excitations, finding good agreement with the zero-field interaction parameters of BaCuSi$_2$O$_6$. We conclude that HFM/EXED allowed a significant extension in the application of neutron scattering techniques to the field range above 20 T and in particular opened new horizons in the study of field-induced magnetic quantum phase transitions.