论文标题

$ p $ -DKNN:通过深度表示的统计测试分发检测

$p$-DkNN: Out-of-Distribution Detection Through Statistical Testing of Deep Representations

论文作者

Dziedzic, Adam, Rabanser, Stephan, Yaghini, Mohammad, Ale, Armin, Erdogdu, Murat A., Papernot, Nicolas

论文摘要

缺乏精心校准的置信度估计,使神经网络在安全性领域(例如自动驾驶或医疗保健)中不足。在这些设置中,有能力避免对分布(OOD)数据进行预测的能力与正确分类数据分类一样重要。我们介绍了$ p $ -DKNN,这是一种新颖的推理过程,该过程采用了经过训练的深神经网络,并分析了其中间隐藏表示形式的相似性结构,以计算与端到端模型预测相关的$ p $值。直觉是,对潜在表示的统计测试不仅可以作为分类器来使用,而且还提供了统计上有充分根据的不确定性估计。 $ P $ -DKNN是可扩展的,并利用隐藏层学到的表示形式的组成,这使深度表示学习成功。我们的理论分析基于Neyman-Pearson的分类,并将其与选择性分类的最新进展(拒绝选项)联系起来。我们证明了在弃权预测OOD输入和保持分布输入的高精度之间的有利权衡。我们发现,$ p $ -DKNN强迫自适应攻击者制作对抗性示例,这是一种最差的OOD输入形式,以对输入引入语义上有意义的更改。

The lack of well-calibrated confidence estimates makes neural networks inadequate in safety-critical domains such as autonomous driving or healthcare. In these settings, having the ability to abstain from making a prediction on out-of-distribution (OOD) data can be as important as correctly classifying in-distribution data. We introduce $p$-DkNN, a novel inference procedure that takes a trained deep neural network and analyzes the similarity structures of its intermediate hidden representations to compute $p$-values associated with the end-to-end model prediction. The intuition is that statistical tests performed on latent representations can serve not only as a classifier, but also offer a statistically well-founded estimation of uncertainty. $p$-DkNN is scalable and leverages the composition of representations learned by hidden layers, which makes deep representation learning successful. Our theoretical analysis builds on Neyman-Pearson classification and connects it to recent advances in selective classification (reject option). We demonstrate advantageous trade-offs between abstaining from predicting on OOD inputs and maintaining high accuracy on in-distribution inputs. We find that $p$-DkNN forces adaptive attackers crafting adversarial examples, a form of worst-case OOD inputs, to introduce semantically meaningful changes to the inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源