论文标题

DialCrowd 2.0:以质量为中心的对话系统众包工具包

DialCrowd 2.0: A Quality-Focused Dialog System Crowdsourcing Toolkit

论文作者

Huynh, Jessica, Chiang, Ting-Rui, Bigham, Jeffrey, Eskenazi, Maxine

论文摘要

对话系统开发人员需要高质量的数据来训练,调整和评估其系统。他们经常为此使用众包,因为它提供了许多工人的大量数据。但是,数据质量可能不足。这可能是由于请求者提出任务以及他们如何与工人互动的方式。本文介绍了DialCrowd 2.0,以帮助请求者更清晰地介绍任务并促进与工人的有效沟通,从而帮助请求者获得更高质量的数据。 DialCrowd 2.0指南开发人员创建了改进的人类智能任务(HITS),并且直接适用于开发人员和研究人员当前使用的工作流程。

Dialog system developers need high-quality data to train, fine-tune and assess their systems. They often use crowdsourcing for this since it provides large quantities of data from many workers. However, the data may not be of sufficiently good quality. This can be due to the way that the requester presents a task and how they interact with the workers. This paper introduces DialCrowd 2.0 to help requesters obtain higher quality data by, for example, presenting tasks more clearly and facilitating effective communication with workers. DialCrowd 2.0 guides developers in creating improved Human Intelligence Tasks (HITs) and is directly applicable to the workflows used currently by developers and researchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源