论文标题

自适应不对称标签引导散列用于多媒体搜索

Adaptive Asymmetric Label-guided Hashing for Multimedia Search

论文作者

Long, Yitian

论文摘要

近年来,随着多模式媒体数据在网络上的快速增长,哈希学习方法是实现大量多媒体数据的有效且灵活的跨模式检索的一种方式,从当前的Web资源检索研究社区受到了很多关注。现有的监督哈希方法简单地将标签信息转换为成对的相似性信息,以指导哈希学习,从而在面对多标签数据的情况下导致语义错误的潜在风险。此外,大多数现有的哈希优化方法通过基于放松策略采用近似近似策略来解决NP-HARD优化问题,从而导致较大的量化错误。为了解决上述障碍,我们提出了一个简单而有效的自适应不对称标签引导的哈希,名为A2LH,用于多媒体搜索。具体而言,A2LH是两步哈希方法。在第一步中,我们在不同模态表示和语义标签表示之间设计了一个关联表示模型,并将语义标签表示形式用作中间桥,以解决不同模态之间存在的语义差距。此外,我们提出了一种有效的离散优化算法,用于解决由基于松弛的优化算法引起的量化错误问题。在第二步中,我们利用生成的哈希代码来学习哈希映射功能。实验结果表明,我们提出的方法在所有比较基线方法上都达到了最佳性能。

With the rapid growth of multimodal media data on the Web in recent years, hash learning methods as a way to achieve efficient and flexible cross-modal retrieval of massive multimedia data have received a lot of attention from the current Web resource retrieval research community. Existing supervised hashing methods simply transform label information into pairwise similarity information to guide hash learning, leading to a potential risk of semantic error in the face of multi-label data. In addition, most existing hash optimization methods solve NP-hard optimization problems by employing approximate approximation strategies based on relaxation strategies, leading to a large quantization error. In order to address above obstacles, we present a simple yet efficient Adaptive Asymmetric Label-guided Hashing, named A2LH, for Multimedia Search. Specifically, A2LH is a two-step hashing method. In the first step, we design an association representation model between the different modality representations and semantic label representation separately, and use the semantic label representation as an intermediate bridge to solve the semantic gap existing between different modalities. In addition, we present an efficient discrete optimization algorithm for solving the quantization error problem caused by relaxation-based optimization algorithms. In the second step, we leverage the generated hash codes to learn the hash mapping functions. The experimental results show that our proposed method achieves optimal performance on all compared baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源