论文标题

奇异的球形最大运算符在一类退化两步的lie群上

Singular spherical maximal operators on a class of degenerate two-step nilpotent Lie groups

论文作者

Liu, Naijia, Yan, Lixin

论文摘要

令$ g \ cong \ mathbb {r}^{d} \ ltimes \ mathbb {r} $是一个有限维的两步nilpotent组,群乘以$(x,x,u)\ cdot(u)\ cdot(y,v)满足$ 2 \ leq {\ rm stark} \,j <d $的堕落条件。考虑$$ {\ frak m} f(x,u)= \ sup_ {t> 0} \ big | \int_σf(x-ty,u- t x^{t} jy)dμ(y)dμ(y) $σ$的高斯曲率在supp $dμ$上不存在。在本文中,我们证明,当$ d \ geq 4 $时,最大运算符$ {\ frak m} $在$ l^{p}(g)$上的范围$(d-1)/(d-1)/(d-2)<p \ leq \ leq \ leq \ infty $。

Let $G\cong\mathbb{R}^{d} \ltimes \mathbb{R}$ be a finite-dimensional two-step nilpotent group with the group multiplication $(x,u)\cdot(y,v)\rightarrow(x+y,u+v+x^{T}Jy)$ where $J$ is a skew-symmetric matrix satisfying a degeneracy condition with $2\leq {\rm rank}\, J <d$. Consider the maximal function defined by $$ {\frak M}f(x, u)=\sup_{t>0}\big|\int_Σ f(x-ty, u- t x^{T}Jy) dμ(y)\big|, $$ where $Σ$ is a smooth convex hypersurface and $dμ$ is a compactly supported smooth density on $Σ$ such that the Gaussian curvature of $Σ$ is nonvanishing on supp $dμ$. In this paper we prove that when $d\geq 4$, the maximal operator ${\frak M}$ is bounded on $L^{p}(G)$ for the range $(d-1)/(d-2)<p\leq\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源