论文标题
预测过程分析的可解释的决策支持系统
An Explainable Decision Support System for Predictive Process Analytics
论文作者
论文摘要
预测过程分析已成为组织的基本援助,从而为其流程提供了在线运营支持。但是,需要向流程利益相关者提供解释为什么预测给定过程执行以某种方式行事的原因。否则,他们将不太可能相信预测性监测技术,从而采用它。本文提出了一个预测分析框架,该框架还具有基于莎普利价值观理论的解释功能。该框架已在IBM Process采矿套件中实施,并为业务用户商业化。该框架已在现实生活事件数据上进行了测试,以评估预测的质量和相应的评估。特别是,已经执行了用户评估,以了解系统提供的解释是否可以使流程利益相关者可以理解。
Predictive Process Analytics is becoming an essential aid for organizations, providing online operational support of their processes. However, process stakeholders need to be provided with an explanation of the reasons why a given process execution is predicted to behave in a certain way. Otherwise, they will be unlikely to trust the predictive monitoring technology and, hence, adopt it. This paper proposes a predictive analytics framework that is also equipped with explanation capabilities based on the game theory of Shapley Values. The framework has been implemented in the IBM Process Mining suite and commercialized for business users. The framework has been tested on real-life event data to assess the quality of the predictions and the corresponding evaluations. In particular, a user evaluation has been performed in order to understand if the explanations provided by the system were intelligible to process stakeholders.