论文标题

遗传扰动实验的神经设计

Neural Design for Genetic Perturbation Experiments

论文作者

Pacchiano, Aldo, Wulsin, Drausin, Barton, Robert A., Voloch, Luis

论文摘要

在过去的几年中,如何最大程度地修饰细胞以最大化某种细胞表型以最大化某种细胞表型的问题(例如,遗传编辑的CAR-T,CAR-NK,CAR-NK和CAR-NKT细胞进入癌症临床试验)。由于成本和实验限制,耗尽所有可能的遗传编辑(扰动)及其组合的搜索空间是不可行的。这项工作为迭代探索汇总批次扰动的空间提供了一个理论上合理的框架,以便在实验性预算下最大化目标表型。受此应用程序域的启发,我们研究了批次查询匪徒优化的问题,并介绍了乐观的手臂消除($ \ m rasrm {oae} $)原理,旨在在查询(臂)和输出(rewards)之间在不同功能关系下找到几乎最佳的手臂。 We analyze the convergence properties of $\mathrm{OAE}$ by relating it to the Eluder dimension of the algorithm's function class and validate that $\mathrm{OAE}$ outperforms other strategies in finding optimal actions in experiments on simulated problems, public datasets well-studied in bandit contexts, and in genetic perturbation datasets when the regression model is a deep neural 网络。 OAE在GenEdisco实验计划挑战中的4个数据集中的3个数据集中的3个数据集中还优于基准算法。

The problem of how to genetically modify cells in order to maximize a certain cellular phenotype has taken center stage in drug development over the last few years (with, for example, genetically edited CAR-T, CAR-NK, and CAR-NKT cells entering cancer clinical trials). Exhausting the search space for all possible genetic edits (perturbations) or combinations thereof is infeasible due to cost and experimental limitations. This work provides a theoretically sound framework for iteratively exploring the space of perturbations in pooled batches in order to maximize a target phenotype under an experimental budget. Inspired by this application domain, we study the problem of batch query bandit optimization and introduce the Optimistic Arm Elimination ($\mathrm{OAE}$) principle designed to find an almost optimal arm under different functional relationships between the queries (arms) and the outputs (rewards). We analyze the convergence properties of $\mathrm{OAE}$ by relating it to the Eluder dimension of the algorithm's function class and validate that $\mathrm{OAE}$ outperforms other strategies in finding optimal actions in experiments on simulated problems, public datasets well-studied in bandit contexts, and in genetic perturbation datasets when the regression model is a deep neural network. OAE also outperforms the benchmark algorithms in 3 of 4 datasets in the GeneDisco experimental planning challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源