论文标题
视网膜神经节细胞种群的时间依赖性最大熵模型
Time-dependent maximum entropy model for populations of retinal ganglion cells
论文作者
论文摘要
逆ISIN模型用于计算神经科学中,以推断大型神经元种群同步活性的概率分布。该方法允许与单个神经元偏置和成对相互作用找到玻璃体分布,从而最大化熵并再现记录的神经元活性的经验统计。在这里,我们将这种策略应用于不同类型的大量视网膜输出神经元(神经节细胞),这些神经元具有多种视觉刺激,并具有自己的统计数据。视网膜输出神经元的活性均由上游神经元和复发连接的输入驱动。我们首先采用标准的ISING模型方法,并表明当输入视觉刺激具有短距离空间相关性时,它对系统的集体行为很好,但对于长期范围的空间相关性而失败。之所以发生这种情况,是因为具有长期空间相关性的刺激使神经元的活性在长距离内同步。成对的相互作用无法解释这种效果,因此由成对的ISING模型解释。为了解决此问题,我们应用了一个先前提出的框架,该框架包括单个神经元中的时间依赖性,以模拟神经元如何通过刺激驱动的神经元。多亏了此添加,偏差就考虑了刺激效应,并且成对相互作用允许表征人口活动中的网络效应并重现视网膜结构中复发功能连接的结构。我们发现,视网膜结构分为由强烈相互作用的神经元组成的弱相互作用的亚群。总体而言,该时间框架解决了标准,静态,反式iSing模型的问题,并说明了系统的集体行为,用于具有短或远程相关性的刺激。
The inverse Ising model is used in computational neuroscience to infer probability distributions of the synchronous activity of large neuronal populations. This method allows for finding the Boltzmann distribution with single neuron biases and pairwise interactions that maximizes the entropy and reproduces the empirical statistics of the recorded neuronal activity. Here we apply this strategy to large populations of retinal output neurons (ganglion cells) of different types, stimulated by multiple visual stimuli with their own statistics. The activity of retinal output neurons is driven by both the inputs from upstream neurons and the recurrent connections. We first apply the standard inverse Ising model approach, and show that it accounts well for the system's collective behavior when the input visual stimulus has short-ranged spatial correlations, but fails for long-ranged ones. This happens because stimuli with long-ranged spatial correlations synchronize the activity of neurons over long distances. This effect cannot be accounted for by pairwise interactions, and so by the pairwise Ising model. To solve this issue, we apply a previously proposed framework that includes a temporal dependence in the single neurons biases to model how neurons are driven in time by the stimulus. Thanks to this addition, the stimulus effects are taken into account by the biases, and the pairwise interactions allow for characterizing the network effect in the population activity and for reproducing the structure of the recurrent functional connections in the retinal architecture. We found that the retinal architecture splits into weakly interacting subpopulations composed of strongly interacting neurons. Overall, this temporal framework fixes the problems of the standard, static, inverse Ising model and accounts for the system's collective behavior, for stimuli with either short or long-range correlations.