论文标题

使用深度学习的基于图像和视频的小物体检测指南:海上监视的案例研究

A Guide to Image and Video based Small Object Detection using Deep Learning : Case Study of Maritime Surveillance

论文作者

Rekavandi, Aref Miri, Xu, Lian, Boussaid, Farid, Seghouane, Abd-Krim, Hoefs, Stephen, Bennamoun, Mohammed

论文摘要

光学图像和视频中的小对象检测(SOD)是一个具有挑战性的问题,即使是最先进的通用对象检测方法也无法准确定位和识别此类对象。通常,由于较大的摄像头距离,小物体出现在现实世界中。由于小物体仅占据输入图像中的一个小区域(例如,少于10%),因此从如此小区域中提取的信息并不总是足够丰富以支持决策。在深度学习和计算机愿景的界面上工作的研究人员正在开发多学科策略,以增强基于SOD的深度学习方法的性能。在本文中,我们对2017年至2022年之间发表的160篇研究论文进行了全面评论,以调查这一不断增长的主题。本文总结了现有文献,并提供了一种分类法,以说明当前研究的广泛情况。我们研究了如何在海上环境中提高小物体检测的性能,在海洋环境中,提高性能至关重要。通过建立通用和海上SOD研究之间的联系,已经确定了未来的方向。此外,讨论了用于通用和海上应用程序的SOD的流行数据集,并提供了一些数据集的最新方法的众所周知的评估指标。

Small object detection (SOD) in optical images and videos is a challenging problem that even state-of-the-art generic object detection methods fail to accurately localize and identify such objects. Typically, small objects appear in real-world due to large camera-object distance. Because small objects occupy only a small area in the input image (e.g., less than 10%), the information extracted from such a small area is not always rich enough to support decision making. Multidisciplinary strategies are being developed by researchers working at the interface of deep learning and computer vision to enhance the performance of SOD deep learning based methods. In this paper, we provide a comprehensive review of over 160 research papers published between 2017 and 2022 in order to survey this growing subject. This paper summarizes the existing literature and provide a taxonomy that illustrates the broad picture of current research. We investigate how to improve the performance of small object detection in maritime environments, where increasing performance is critical. By establishing a connection between generic and maritime SOD research, future directions have been identified. In addition, the popular datasets that have been used for SOD for generic and maritime applications are discussed, and also well-known evaluation metrics for the state-of-the-art methods on some of the datasets are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源