论文标题
与互动的自旋量子厅对称类别中的广义多纹
Generalized multifractality in the spin quantum Hall symmetry class with interaction
论文作者
论文摘要
在安德森过渡临界值处具有系统大小的各种局部可观察物的缩放为特征,其特征是多违法行为。我们研究了在相互作用的情况下研究自旋量子霍尔对称类别(C类)中的广义多纹理。我们采用Finkel'Stein非线性Sigma模型,并在存在相互作用的情况下为C类构建纯缩放衍生物的无用操作员。在两循环重新归一化组分析中,我们计算纯缩放算子的异常维度,并证明它们受到相互作用的影响。我们发现,这种相互作用破坏了以非互动问题而闻名的广义多重相关指数之间的精确对称关系。
Scaling of various local observables with a system size at Anderson transition criticality is characterized by a generalized multifractality. We study the generalized multifractality in the spin quantum Hall symmetry class (class C) in the presence of interaction. We employ Finkel'stein nonlinear sigma model and construct the pure scaling derivativeless operators for class C in the presence of interaction. Within the two-loop renormalization group analysis we compute the anomalous dimensions of the pure scaling operators and demonstrate that they are affected by the interaction. We find that the interaction breaks exact symmetry relations between generalized multifractal exponents known for a noninteracting problem.