论文标题

视频操作超出面孔:带人机分析的数据集

Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis

论文作者

Mittal, Trisha, Sinha, Ritwik, Swaminathan, Viswanathan, Collomosse, John, Manocha, Dinesh

论文摘要

作为内容编辑成熟的工具,以及基于人工智能(AI)综合媒体增长的算法,整个在线媒体上的操纵内容的存在正在增加。这种现象导致了错误信息的传播,从而更需要区分``真实''和``操纵''内容的需求。为此,我们介绍了Videosham,该数据集由826个视频(413个真实和413个操纵)组成。许多现有的DeepFake数据集专门集中在两种类型的面部操作上 - 与另一个受试者的脸交换或更改现有面部。另一方面,Videosham包含更多样化,上下文富裕和以人为本的高分辨率视频,使用6种不同的空间和时间攻击的组合来操纵。我们的分析表明,最新的操纵检测算法仅适用于一些特定的攻击,并且在视频记录上不能很好地扩展。我们在亚马逊机械土耳其人上进行了一项用户研究,其中1200名参与者可以区分视频迷的真实视频和操纵视频。最后,我们更深入地研究了人类和sota-Algorithms表演的优势和缺点,以识别需要用更好的AI算法填充的差距。我们在https://github.com/adobe-research/videosham-dataset上介绍数据集。

As tools for content editing mature, and artificial intelligence (AI) based algorithms for synthesizing media grow, the presence of manipulated content across online media is increasing. This phenomenon causes the spread of misinformation, creating a greater need to distinguish between ``real'' and ``manipulated'' content. To this end, we present VideoSham, a dataset consisting of 826 videos (413 real and 413 manipulated). Many of the existing deepfake datasets focus exclusively on two types of facial manipulations -- swapping with a different subject's face or altering the existing face. VideoSham, on the other hand, contains more diverse, context-rich, and human-centric, high-resolution videos manipulated using a combination of 6 different spatial and temporal attacks. Our analysis shows that state-of-the-art manipulation detection algorithms only work for a few specific attacks and do not scale well on VideoSham. We performed a user study on Amazon Mechanical Turk with 1200 participants to understand if they can differentiate between the real and manipulated videos in VideoSham. Finally, we dig deeper into the strengths and weaknesses of performances by humans and SOTA-algorithms to identify gaps that need to be filled with better AI algorithms. We present the dataset at https://github.com/adobe-research/VideoSham-dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源