论文标题
解决哈勃和$ s_8 $张力,具有动力学混合的黑暗部门
Addressing the Hubble and $S_8$ Tensions with a Kinetically Mixed Dark Sector
论文作者
论文摘要
我们提出了一个动力学混合的黑暗扇区(KMIX)模型,以解决哈勃和$ S_8 $张力。受字符串理论的启发,我们的模型包括两个字段:一个轴,它在早期的暗能量模型中扮演的角色与标量相似,并且扮演着一个dilaton。该理论不同于其他针对哈勃张力的轴 - 迪拉顿模型,因为两个场之间必然存在动力学混合,从而可以有效地从轴上转移到具有$ w \ of 1 $的DILATON。由于这些动力学的直接结果,我们发现该模型无需求助于解决哈勃张力的微调潜力,并自然地容纳了标准轴心电位。此外,一旦它开始在其潜力的底部振荡,并且会抑制对尺度敏感的对$ s_8 $的敏感的增长,则轴是$ω_ {\ rm cdm} $的小(模糊)部分的小(模糊)部分。有趣的是,Dilaton的潜力规模必须很小,$ \ Lessim \ Mathcal {O}(10〜 {\ rm Mev})^4 $,这表明与暗能量建立连接的可能性。在修改后的Boltzmann代码中实施背景和扰动的动力学,我们为我们的理论计算了CMB和物质功率谱。在探索模型的参数空间时,我们发现可以容纳$ \ sim 10 \%$从普朗克推断值和$ s_8 $值的区域增加,而$ s_8 $值与大规模结构约束一致。
We present a kinetically mixed dark sector (KMIX) model to address the Hubble and $S_8$ tensions. Inspired from string theory, our model includes two fields: an axion, which plays a role similar to the scalar field in early dark energy models, and a dilaton. This theory differs from other axio-dilaton models aimed at the Hubble tension in that there is necessarily kinetic mixing between the two fields which allows for efficient energy transfer from the axion into the dilaton which has $w\approx1$. As a direct consequence of these dynamics, we find the model does not need to resort to a fine-tuned potential to solve the Hubble tension and naturally accommodates a standard axion potential. Furthermore, the axion will necessarily makeup a small (fuzzy) fraction of $Ω_{\rm cdm}$ once it begins to oscillate at the bottom of its potential and will suppress the growth of perturbations on scales sensitive to $S_8$. Interestingly, the scale of the potential for the dilaton has to be small, $\lesssim \mathcal{O}(10~{\rm meV})^4$, suggesting the possibility for a connection to dark energy. Implementing the dynamics for the background and perturbations in a modified Boltzmann code we calculate the CMB and matter power spectra for our theory. Exploring the parameter space of our model, we find regions which can accommodate a $\sim 10\%$ increase in $H_0$ from the Planck inferred value and $S_8$ values that are consistent with large-scale structure constraints.