论文标题
在对流红色超级巨人信封中爆发前爆发前的3D流体动力学
3D Hydrodynamics of Pre-supernova Outbursts in Convective Red Supergiant Envelopes
论文作者
论文摘要
爆发性质量损失可能会产生一些大量恒星在经历核心循环超新星(CCSNE)之前观察到的能量爆发。所得的密集室内培养基(CSM)也可能导致随后的SNE视为IIN型事件。这些爆发原因的主要假设是在倒塌之前至几年的几个月中,红色超巨人(RSG)祖细胞对能量沉积的包络的反应。对该现象的早期理论研究仅限于1D,而3D对流的RSG结构未得到解决。使用Flash的流体动力功能,我们通过构建对流的RSG信封模型和沉积能量来探索3D结果,而不是在它们内部深处的信封动态时间短的信封结合能小于包膜结合能。我们证实了向外移动的声脉冲陡峭的1D预测,使信封的最外部部分脱落。但是,我们发现最初的2-4 km/s的对流运动种子种子与信封深处的高熵材料相关的固有的对流不稳定性,使来自信封内部深处的气体能够逃脱,从而增加了与最初的“ quiescent”信封相比的喷射质量。 3D模型揭示了丰富的密度结构,柱密度沿不同的视线变化10倍。我们的工作强调,RSG信封的3D对流性质会影响我们可靠地预测与深度能量沉积相关的弹出质量的爆发动态,数量和空间分布的能力。
Eruptive mass loss likely produces the energetic outbursts observed from some massive stars before they undergo core-collapse supernovae (CCSNe). The resulting dense circumstellar medium (CSM) may also cause the subsequent SNe to be observed as Type IIn events. The leading hypothesis of the cause of these outbursts is the response of the envelope of the red supergiant (RSG) progenitor to energy deposition in the months to years prior to collapse. Early theoretical studies of this phenomena were limited to 1D, leaving the 3D convective RSG structure unaddressed. Using FLASH's hydrodynamic capabilities, we explore the 3D outcomes by constructing convective RSG envelope models and depositing energies less than the envelope binding energies on timescales shorter than the envelope dynamical time deep within them. We confirm the 1D prediction of an outward moving acoustic pulse steepening into a shock, unbinding the outermost parts of the envelope. However, we find that the initial 2-4 km/s convective motions seed the intrinsic convective instability associated with the high entropy material deep in the envelope, enabling gas from deep within the envelope to escape, increasing the amount of ejected mass compared to an initially "quiescent" envelope. The 3D models reveal a rich density structure, with column densities varying by 10x along different lines of sight. Our work highlights that the 3D convective nature of RSG envelopes impacts our ability to reliably predict the outburst dynamics, the amount, and the spatial distribution of the ejected mass associated with deep energy deposition.