论文标题
VDL-SURROGATE:一个基于视图的基于观点的潜在模型,用于集合模拟的参数空间探索
VDL-Surrogate: A View-Dependent Latent-based Model for Parameter Space Exploration of Ensemble Simulations
论文作者
论文摘要
我们提出了VDL-Surrogate,这是一种基于视图的神经网络贴替代模型,用于集合模拟的参数空间探索,该模拟允许高分辨率可视化和用户指定的视觉映射。支持替代物的参数空间探索允许域科学家预览模拟结果,而不必运行大量计算成本的模拟。但是,受计算资源的限制,现有的替代模型可能无法产生以可视化和分析的足够分辨率的预览。为了提高计算资源的有效利用并支持高分辨率探索,我们从不同的角度进行射线铸造以收集样品并产生紧凑的潜在表示。这种潜在的编码过程降低了替代模型培训的成本,同时保持产出质量。在模型训练阶段,我们选择观点以覆盖整个观看球体,并为所选观点列车对应的VDL-Surrogate模型。在模型推理阶段,我们在先前选择的观点上预测潜在表示,并将潜在表示形式解码为数据空间。对于任何给定的观点,我们在选定的观点上对解码数据进行插值,并通过用户指定的视觉映射生成可视化。我们通过定量和定性评估显示了VDL - 四酸盐在宇宙学和海洋模拟中的有效性和效率。源代码可在https://github.com/trainsn/vdl-surrogate上公开获取。
We propose VDL-Surrogate, a view-dependent neural-network-latent-based surrogate model for parameter space exploration of ensemble simulations that allows high-resolution visualizations and user-specified visual mappings. Surrogate-enabled parameter space exploration allows domain scientists to preview simulation results without having to run a large number of computationally costly simulations. Limited by computational resources, however, existing surrogate models may not produce previews with sufficient resolution for visualization and analysis. To improve the efficient use of computational resources and support high-resolution exploration, we perform ray casting from different viewpoints to collect samples and produce compact latent representations. This latent encoding process reduces the cost of surrogate model training while maintaining the output quality. In the model training stage, we select viewpoints to cover the whole viewing sphere and train corresponding VDL-Surrogate models for the selected viewpoints. In the model inference stage, we predict the latent representations at previously selected viewpoints and decode the latent representations to data space. For any given viewpoint, we make interpolations over decoded data at selected viewpoints and generate visualizations with user-specified visual mappings. We show the effectiveness and efficiency of VDL-Surrogate in cosmological and ocean simulations with quantitative and qualitative evaluations. Source code is publicly available at https://github.com/trainsn/VDL-Surrogate.