论文标题
图形光谱域中的点云攻击:3D几何符合图形信号处理时
Point Cloud Attacks in Graph Spectral Domain: When 3D Geometry Meets Graph Signal Processing
论文作者
论文摘要
随着各种3D安全关键应用的关注,点云学习模型已被证明容易受到对抗攻击的影响。尽管现有的3D攻击方法达到了很高的成功率,但它们会以明显的扰动来深入研究数据空间,这可能会忽略几何特征。取而代之的是,我们从新的角度提出了点云攻击 - 图形频谱域攻击,旨在在光谱域中扰动图形转换系数,该系数与改变某些几何结构相对应。具体而言,利用图形信号处理,我们首先通过图形傅立叶变换(GFT)自适应地将点的坐标转换为光谱域,以进行紧凑的表示。然后,我们基于我们建议通过可学习的图形光谱滤波器扰动GFT系数的几何结构的影响。考虑到低频组件主要有助于3D对象的粗糙形状,我们进一步引入了低频约束,以限制不察觉到的高频组件中的扰动。最后,通过将扰动的光谱表示通过反向GFT转换回数据域,从而生成对抗点云。实验结果证明了拟议攻击的有效性,从无遗本和攻击成功率方面。
With the increasing attention in various 3D safety-critical applications, point cloud learning models have been shown to be vulnerable to adversarial attacks. Although existing 3D attack methods achieve high success rates, they delve into the data space with point-wise perturbation, which may neglect the geometric characteristics. Instead, we propose point cloud attacks from a new perspective -- the graph spectral domain attack, aiming to perturb graph transform coefficients in the spectral domain that corresponds to varying certain geometric structure. Specifically, leveraging on graph signal processing, we first adaptively transform the coordinates of points onto the spectral domain via graph Fourier transform (GFT) for compact representation. Then, we analyze the influence of different spectral bands on the geometric structure, based on which we propose to perturb the GFT coefficients via a learnable graph spectral filter. Considering the low-frequency components mainly contribute to the rough shape of the 3D object, we further introduce a low-frequency constraint to limit perturbations within imperceptible high-frequency components. Finally, the adversarial point cloud is generated by transforming the perturbed spectral representation back to the data domain via the inverse GFT. Experimental results demonstrate the effectiveness of the proposed attack in terms of both the imperceptibility and attack success rates.