论文标题

几乎没有可见的特洛伊木马攻击对神经网络的攻击

Hardly Perceptible Trojan Attack against Neural Networks with Bit Flips

论文作者

Bai, Jiawang, Gao, Kuofeng, Gong, Dihong, Xia, Shu-Tao, Li, Zhifeng, Liu, Wei

论文摘要

深度神经网络(DNN)的安全性因其在各种应用中的广泛使用而引起了人们的关注。最近,已被部署的DNN被证明容易受到特洛伊木马攻击的影响,该攻击可以用位倒换来操纵模型参数,以注入隐藏的行为并通过特定的触发模式激活它。但是,所有现有的特洛伊木马攻击都采用了明显的基于补丁的触发器(例如,正方形模式),使其对人类可感知,并且很容易被机器发现。在本文中,我们提出了一种新颖的攻击,即几乎不可感知的特洛伊木马攻击(HPT)。 HPT通过利用添加噪声和每个像素流场来分别调整原始图像的像素值和位置,而不是通过使用加性噪声和每个像素流场来制作的特洛伊木马图像。为了实现卓越的攻击性能,我们建议共同优化位挡板,加性噪声和流场。由于DNN的重量位是二进制的,因此很难解决此问题。我们通过等效替换处理二进制约束,并提供有效的优化算法。在CIFAR-10,SVHN和Imagenet数据集上进行了广泛的实验表明,所提出的HPT几乎可以产生不可感知的特洛伊木马图像,而与先进的方法相比,实现了可比或更好的攻击性能。该代码可在以下网址找到:https://github.com/jiawangbai/hpt。

The security of deep neural networks (DNNs) has attracted increasing attention due to their widespread use in various applications. Recently, the deployed DNNs have been demonstrated to be vulnerable to Trojan attacks, which manipulate model parameters with bit flips to inject a hidden behavior and activate it by a specific trigger pattern. However, all existing Trojan attacks adopt noticeable patch-based triggers (e.g., a square pattern), making them perceptible to humans and easy to be spotted by machines. In this paper, we present a novel attack, namely hardly perceptible Trojan attack (HPT). HPT crafts hardly perceptible Trojan images by utilizing the additive noise and per pixel flow field to tweak the pixel values and positions of the original images, respectively. To achieve superior attack performance, we propose to jointly optimize bit flips, additive noise, and flow field. Since the weight bits of the DNNs are binary, this problem is very hard to be solved. We handle the binary constraint with equivalent replacement and provide an effective optimization algorithm. Extensive experiments on CIFAR-10, SVHN, and ImageNet datasets show that the proposed HPT can generate hardly perceptible Trojan images, while achieving comparable or better attack performance compared to the state-of-the-art methods. The code is available at: https://github.com/jiawangbai/HPT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源