论文标题

未经训练的物理知情神经网络,用于磁场源的图像重建

Untrained physically informed neural network for image reconstruction of magnetic field sources

论文作者

Dubois, A. E. E., Broadway, D. A., Stark, A., Tschudin, M. A., Healey, A. J., Huber, S. D., Tetienne, J. -P., Greplova, E., Maletinsky, P.

论文摘要

从基础结构中预测测量结果通常直接源于基本物理原理。但是,在试图解决基于测量数据的基本源构造的逆问题时,提出了基本挑战。一个关键的困难源于这样的事实,即这种重建通常涉及不足的转换,并且容易产生数值人工制品。在这里,我们开发了一种有效的方法来解决此反问题,以重建来自测量的磁性弹性场图像的磁化图。我们的方法基于具有物理推断的损失功能的神经网络,以有效消除常见的数值人工伪像。我们报告了对传统方法的重建的显着改善,我们表明我们的方法对不同磁化方向(无论是在平面外和偏僻的磁化方向)以及磁场测量轴方向的变化而言。虽然我们在钻石中使用磁化磁盘旋转展示了方法的性能,但我们基于神经网络的方法来解决反问题的方法不可知对测量技术不可知,因此在这项工作中所证明的特定用例以外适用。

Predicting measurement outcomes from an underlying structure often follows directly from fundamental physical principles. However, a fundamental challenge is posed when trying to solve the inverse problem of inferring the underlying source-configuration based on measurement data. A key difficulty arises from the fact that such reconstructions often involve ill-posed transformations and that they are prone to numerical artefacts. Here, we develop a numerically efficient method to tackle this inverse problem for the reconstruction of magnetisation maps from measured magnetic stray field images. Our method is based on neural networks with physically inferred loss functions to efficiently eliminate common numerical artefacts. We report on a significant improvement in reconstruction over traditional methods and we show that our approach is robust to different magnetisation directions, both in- and out-of-plane, and to variations of the magnetic field measurement axis orientation. While we showcase the performance of our method using magnetometry with Nitrogen Vacancy centre spins in diamond, our neural-network-based approach to solving inverse problems is agnostic to the measurement technique and thus is applicable beyond the specific use-case demonstrated in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源