论文标题

多通道衰减:$ i $ th频道衰减概率的替代推导

Multichannel decay: alternative derivation of the $i$-th channel decay probability

论文作者

Giacosa, Francesco

论文摘要

在衰减的研究中,不稳定的量子状态/粒子具有多个不同的衰减通道非常普遍。在这种情况下,除了生存概率$ p(t)$之外,损失发生在$ i $ th频道中的$(0,t)$之间的概率$ w_ {i}(t)$是相关对象。函数$ w_ {i}(t)$的一般形式最近在plb \ textbf {831}(2022),137200中介绍。在这里,我们提供了$ p(t)$和$ w_ {i}(i}(i}(t)$的$ p(t)$ p(t)$ p(t)$ p(t)$。众所周知,$ p(t)$不是指数函数。同样,$ w_ {i}(t)$也不是这样。特别是,比率$ w_ {i}/w_ {j} $(对于$ i \ neq j)$并不是一个简单的常数,因为它处于指数限制。 $ W_ {i}(t)$及其相互比率的函数可能代表了研究衰减定律的非指数性质的新颖工具。

In the study of decays, it is quite common that an unstable quantum state/particle has multiple distinct decay channels. In this case, besides the survival probability $p(t)$, also the probability $w_{i}(t)$ that the decay occurs between $(0,t)$ in the $i$-th channel is a relevant object. The general form of the function $w_{i}(t)$ was recently presented in PLB \textbf{831} (2022), 137200. Here, we provide a novel and detailed `joint' derivation of both $p(t)$ and $w_{i}(t)$. As it is well known, $p(t)$ is not an exponential function; similarly, $w_{i}(t)$ is also not such. In particular, the ratio $w_{i}/w_{j}$ (for $i\neq j)$ is not a simple constant, as it would be in the exponential limit. The functions $w_{i}(t)$ and their mutual ratios may therefore represent a novel tool to study the non-exponential nature of the decay law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源