论文标题
SPE Meteoroid簇的射速速度,年龄和形成过程
Ejection velocities, age, and formation process of SPE meteoroid cluster
论文作者
论文摘要
我们遵循了我们先前关于2016年9月的Epsilon Perseid(SPE)子流星群集的工作。我们假设质量主导的麦体是簇的母体,并且观察到的灭气体位置受射流速度和阳光辐射压力的作用来控制。得出了依赖流星射速速度对相互位置,质量和聚类年龄的公式。知道射速速度的值和方向以及流星质量,然后使我们能够确定最可能的群集形成过程。 流星体的体积为66美元$ \ times $ 67 $ \ times $ 50公里,相对于母体归光量,朝着反相方向转移了27公里。集群的年龄为2.28 $ \ pm $ 0.44天。弹性速度从0.13 $ \ pm $ 0.05 m/s到0.77 $ \ pm $ 0.34 m/s,平均值为0.35 m/s。弹射速度方向在锥体内,顶点为101 $ \ pm $ 5 $^\ circ $。圆锥形的轴为$ \ sim $ 45 $^\ circ $远离太阳方向,$ \ sim $ 34 $^\ circ $远离父Meteoroids事件的平均通量方向。由于旋转非常快的旋转而导致的一部分由于表面的分离而形成是最不可能发生的事情。我们估计旋转频率约为2 Hz,相应的应力比预测强度极限低几个数量级。小流星物体对母体的影响也很难解释簇的形成。但是,这种可能性虽然不是很可能,但不能完全排除。最可能的过程是由于热应力引起的去角质。它们的估计幅度足够,衍生的射血速度与这种形成过程一致。
We follow our previous work about the September epsilon Perseid (SPE) meteoroid cluster from 2016. We assumed that the mass-dominated meteoroid is the parent body of the cluster and that the observed positions of meteoroids are controlled by the ejection velocities and the action of solar radiation pressure. A formula for the dependence of meteoroid ejection velocities on the mutual positions, masses, and cluster age was derived. Knowing values and directions of ejection velocities together with meteoroid masses then allowed us to determine the most likely process of cluster formation. The meteoroids occupy a volume of 66$\times$67$\times$50 km and are shifted in the antisolar direction by 27 km relative to the parent meteoroid. The age of the cluster is 2.28$\pm$0.44 days. The ejection velocities range from 0.13$\pm$0.05 m/s to 0.77$\pm$0.34 m/s with a mean value of 0.35 m/s. The ejection velocity directions are inside the cone with an apex angle of 101$\pm$5$^\circ$. The axis of the cone is $\sim$45$^\circ$ away from the solar direction and $\sim$34$^\circ$ away from the mean direction of the flux of small meteoroids' incident on the parent meteoroid. Formation due to the separation of part of the surface due to very fast rotation is the least likely thing to occur. We estimate the rotation frequency to be about 2 Hz and the corresponding stress is several orders of magnitude lower than the predicted strength limit. It is also difficult to explain the formation of the cluster by an impact of a small meteoroid on the parent body. However, this possibility, although not very likely, cannot be completely ruled out. The most probable process is the exfoliation due to thermal stresses. Their estimated magnitude is sufficient and the derived ejection velocities are consistent with this process of formation.