论文标题

Kummer类型及其固定基因座的符合性品种的一组符合性。

Groups of symplectic involutions on symplectic varieties of Kummer type and their fixed loci

论文作者

Frei, Sarah, Honigs, Katrina

论文摘要

我们描述了在中间$ \ ell $ -ADIC共同体上的galois动作,该共同体是光滑,投影四倍的$ k_a(v)$,这些$ k_a(v)$是在Abelian Surface $ a $ a $ a abel v $ v $ abelian Surface $ a $ a $ a $ a $ a sheaves sheaves上的阿尔巴内斯形态的纤维中发生的。我们显示此动作取决于$ h^2_ {ét}(a _ {\ bar {k}}},\ Mathbb {q} _ \ ell(1))$和子组$ g_a(v)\ leqslant(a \ leqslant(a \ times \ times \ hat {a p {a a a})$ v $,这概括了Hassett和Tschinkel [HT13]在$ \ Mathbb {C} $上进行的分析。结果,在数字字段上,我们提供了一个条件,在该条件下,$ k_2(a)$和$ k_2(\ hat {a})$不是同等的。 $ g_a(v)$的点对应于$ k_a(v)$。超过$ \ mathbb {c} $,已知它们是符合性的,并包含在地图$ \ mathrm {aut}(aut}(k_a(v))\ to \ mathrm {o}(h^2(h^2(k_a(k_a(k_a(v),\ mathbb {z})))))中)$。我们描述了所有品种的内核$ k_a(v)$ dimension至少$ 4 $。 当$ k_a(v)$在特征0的字段上是一个四倍时,互动的定点基因座包含K3表面,其周期类别占中间同胞的很大一部分。我们检查了固定的基因座$ k_a(0,l,s)$以上的$ \ mathbb {c} $,其中$ l $是$(1,3)$ - 极化,发现在Lagrangian的Lagrangian振动下,将K3表面纤维化为$ k_a(0,l,s)$。

We describe the Galois action on the middle $\ell$-adic cohomology of smooth, projective fourfolds $K_A(v)$ that occur as a fiber of the Albanese morphism on moduli spaces of sheaves on an abelian surface $A$ with Mukai vector $v$. We show this action is determined by the action on $H^2_{ét}(A_{\bar{k}},\mathbb{Q}_\ell(1))$ and on a subgroup $G_A(v) \leqslant (A\times \hat{A})[3]$, which depends on $v$. This generalizes the analysis carried out by Hassett and Tschinkel [HT13] over $\mathbb{C}$. As a consequence, over number fields, we give a condition under which $K_2(A)$ and $K_2(\hat{A})$ are not derived equivalent. The points of $G_A(v)$ correspond to involutions of $K_A(v)$. Over $\mathbb{C}$, they are known to be symplectic and contained in the kernel of the map $\mathrm{Aut}(K_A(v))\to \mathrm{O}(H^2(K_A(v),\mathbb{Z}))$. We describe this kernel for all varieties $K_A(v)$ of dimension at least $4$. When $K_A(v)$ is a fourfold over a field of characteristic 0, the fixed-point loci of the involutions contain K3 surfaces whose cycle classes span a large portion of the middle cohomology. We examine the fixed loci in fourfolds $K_A(0,l,s)$ over $\mathbb{C}$ where $l$ is a $(1,3)$-polarization, finding the K3 surface to be elliptically fibered under a Lagrangian fibration of $K_A(0,l,s)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源