论文标题
通过事件触发的学习来提高强大控制的性能
Improving the Performance of Robust Control through Event-Triggered Learning
论文作者
论文摘要
强大的控制器确保在不确定性下设计但以绩效为代价的反馈回路中的稳定性。最近提出的基于学习的方法可以减少时间不变系统的模型不确定性,从而改善了使用数据的稳健控制器的性能。但是,实际上,由于体重变化或磨损,许多系统也以变化的形式表现出不确定性,从而导致基于学习的控制器的性能或不稳定。我们提出了一种事件触发的学习算法,该算法决定何时在LQR问题中以罕见或缓慢的变化在LQR问题中学习。我们的关键想法是在健壮的控制器和学习的控制器之间切换。对于学习,我们首先使用概率模型通过蒙特卡洛估计来近似学习阶段的最佳长度。然后,我们根据LQR成本的力矩生成功能设计了不确定系统的统计测试。该测试检测到控制下的系统的变化,并在控制性能由于系统变化而恶化时触发重新学习。在数值示例中,我们在鲁棒控制器基线上证明了性能的提高。
Robust controllers ensure stability in feedback loops designed under uncertainty but at the cost of performance. Model uncertainty in time-invariant systems can be reduced by recently proposed learning-based methods, which improve the performance of robust controllers using data. However, in practice, many systems also exhibit uncertainty in the form of changes over time, e.g., due to weight shifts or wear and tear, leading to decreased performance or instability of the learning-based controller. We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem with rare or slow changes. Our key idea is to switch between robust and learned controllers. For learning, we first approximate the optimal length of the learning phase via Monte-Carlo estimations using a probabilistic model. We then design a statistical test for uncertain systems based on the moment-generating function of the LQR cost. The test detects changes in the system under control and triggers re-learning when control performance deteriorates due to system changes. We demonstrate improved performance over a robust controller baseline in a numerical example.