论文标题
Rankin-Selberg和Triple Product l功能的子概念问题
The subconvexity problem for Rankin-Selberg and triple product L-functions
论文作者
论文摘要
在本文中,我们研究了Rankin-Selberg L功能和三量L功能的亚凸度问题,从而允许关节分支和导体下降范围。我们首先扩展了Michel-Venkatesh的方法,以减少L功能与测试向量上的局部猜想的界限,然后在某些条件下验证这些局部猜想,只要表示这些表示不完全相关。
In this paper we study the subconvexity problem for the Rankin-Selberg L-function and triple product L-function, allowing joint ramifications and conductor dropping range. We first extend the method of Michel-Venkatesh to reduce the bounds for L-functions to local conjectures on test vectors, then verify these local conjectures under certain conditions, giving new subconvex bounds as long as the representations are not completely related.