论文标题

Rankin-Selberg和Triple Product l功能的子概念问题

The subconvexity problem for Rankin-Selberg and triple product L-functions

论文作者

Hu, Yueke, Michel, Philippe, Nelson, Paul

论文摘要

在本文中,我们研究了Rankin-Selberg L功能和三量L功能的亚凸度问题,从而允许关节分支和导体下降范围。我们首先扩展了Michel-Venkatesh的方法,以减少L功能与测试向量上的局部猜想的界限,然后在某些条件下验证这些局部猜想,只要表示这些表示不完全相关。

In this paper we study the subconvexity problem for the Rankin-Selberg L-function and triple product L-function, allowing joint ramifications and conductor dropping range. We first extend the method of Michel-Venkatesh to reduce the bounds for L-functions to local conjectures on test vectors, then verify these local conjectures under certain conditions, giving new subconvex bounds as long as the representations are not completely related.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源