论文标题
重量约束最短路径问题的增强方法
Enhanced Methods for the Weight Constrained Shortest Path Problem
论文作者
论文摘要
限制探路的经典问题是AI中有一个充分研究但充满挑战的主题,在沟通和运输等各个领域的应用中都有广泛的应用。重量限制了最短路径问题(WCSPP),这是只有一个侧限制的受约束路径的基本形式,旨在计划一条成本优越的路径,而权重/资源使用有限。考虑到问题的双标准性质(即处理路径的成本和重量),解决WCSPP的方法具有一些带有双目标搜索的共同属性。本文在约束的路径和双目标搜索中利用了最新的最新技术,并根据A*搜索提供了两种新的解决方案方法,可以在非常大图上求解硬WCSPP实例。我们从经验上评估了算法在一组大型逼真的问题实例上的性能,并在时间和空间指标中显示出它们比最先进算法的优势。本文还研究了优先级排队在有限搜索中的重要性。我们通过对现实图和随机图进行了广泛的实验来展示,基于铲斗的队列如何而没有打破打盘可以有效地改善基于详尽的A*基于A*基于的双标准搜索的算法性能。
The classic problem of constrained pathfinding is a well-studied, yet challenging, topic in AI with a broad range of applications in various areas such as communication and transportation. The Weight Constrained Shortest Path Problem (WCSPP), the base form of constrained pathfinding with only one side constraint, aims to plan a cost-optimum path with limited weight/resource usage. Given the bi-criteria nature of the problem (i.e., dealing with the cost and weight of paths), methods addressing the WCSPP have some common properties with bi-objective search. This paper leverages the recent state-of-the-art techniques in both constrained pathfinding and bi-objective search and presents two new solution approaches to the WCSPP on the basis of A* search, both capable of solving hard WCSPP instances on very large graphs. We empirically evaluate the performance of our algorithms on a set of large and realistic problem instances and show their advantages over the state-of-the-art algorithms in both time and space metrics. This paper also investigates the importance of priority queues in constrained search with A*. We show with extensive experiments on both realistic and randomised graphs how bucket-based queues without tie-breaking can effectively improve the algorithmic performance of exhaustive A*-based bi-criteria searches.