论文标题

样式:HDR Panorama生成用于照明估算和编辑

StyleLight: HDR Panorama Generation for Lighting Estimation and Editing

论文作者

Wang, Guangcong, Yang, Yinuo, Loy, Chen Change, Liu, Ziwei

论文摘要

我们提出了一个新的照明估计和编辑框架,以从单个有限的视野(LFOV)图像中生成高动力范围(HDR)室内全景照明,该图像由低动力范围(LDR)摄像机捕获。现有的照明估计方法可以直接回归照明表示参数,要么将此问题分解为LFOV至Panorama和LDR-TO-HDR照明子任务。但是,由于部分观察结果,高动力范围的照明以及场景的内在含糊性,照明估计仍然是一项艰巨的任务。为了解决这个问题,我们建议将LDR和HDR Panorama合成融合到统一的框架中,提出了一个耦合的双风格全景合成网络(Stylelight)。 LDR和HDR Panorama合成具有相似的发电机,但具有单独的歧视器。在推断期间,给定LDR LFOV图像,我们提出了一种焦距掩盖的GAN反转方法,以通过LDR Panorama合成分支找到其潜在代码,然后通过HDR Panorama合成分支合成HDR Panorama。 Stylelight将LFOV-to-Panorama和LDR-HDR Lighting Generation带入统一的框架,从而大大改善了照明估计。广泛的实验表明,我们的框架在室内照明估计上实现了优于最先进方法的表现。值得注意的是,Stylelight还可以在室内HDR Panoramas上进行直观的照明编辑,这适用于现实世界中的应用。代码可从https://style-light.github.io获得。

We present a new lighting estimation and editing framework to generate high-dynamic-range (HDR) indoor panorama lighting from a single limited field-of-view (LFOV) image captured by low-dynamic-range (LDR) cameras. Existing lighting estimation methods either directly regress lighting representation parameters or decompose this problem into LFOV-to-panorama and LDR-to-HDR lighting generation sub-tasks. However, due to the partial observation, the high-dynamic-range lighting, and the intrinsic ambiguity of a scene, lighting estimation remains a challenging task. To tackle this problem, we propose a coupled dual-StyleGAN panorama synthesis network (StyleLight) that integrates LDR and HDR panorama synthesis into a unified framework. The LDR and HDR panorama synthesis share a similar generator but have separate discriminators. During inference, given an LDR LFOV image, we propose a focal-masked GAN inversion method to find its latent code by the LDR panorama synthesis branch and then synthesize the HDR panorama by the HDR panorama synthesis branch. StyleLight takes LFOV-to-panorama and LDR-to-HDR lighting generation into a unified framework and thus greatly improves lighting estimation. Extensive experiments demonstrate that our framework achieves superior performance over state-of-the-art methods on indoor lighting estimation. Notably, StyleLight also enables intuitive lighting editing on indoor HDR panoramas, which is suitable for real-world applications. Code is available at https://style-light.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源