论文标题

使用Sleepio中捕获的睡眠日记,通过神经网络对睡眠行为的个性化建议

Personalised recommendations of sleep behaviour with neural networks using sleep diaries captured in Sleepio

论文作者

Nevado-Holgado, Alejo, Espie, Colin, Liakata, Maria, Henry, Alasdair, Gu, Jenny, Taylor, Niall, Saunders, Kate, Walker, Tom, Miller, Chris

论文摘要

Sleepiotm是一种数字手机和网络平台,使用认知行为疗法(CBT)的技术来改善睡眠困难患者的睡眠。作为此过程的一部分,Sleepio捕获了有关已处理此类数据的用户睡眠行为的数据。对于神经网络,数据的规模是训练可转换为实际临床实践的有意义模型的机会。与创建和利用Sleepio的Therapeutics公司Big Health合作,我们分析了401,174个睡眠日记的随机样本中的数据,并建立了一个神经网络,以个性化的方式对每个人的睡眠行为和睡眠质量进行建模。我们证明,根据过去10天的行为预测个人的睡眠质量,该神经网络比标准统计方法更准确。我们比较了代表各种情况的各种超参数设置中的模型性能。我们进一步表明,神经网络可用于提出个性化建议,以了解用户应遵循哪些习惯以最大程度地提高睡眠质量,并证明这些建议比标准方法产生的建议要好得多。我们最终表明,神经网络可以解释给每个参与者的建议,并计算每个预测的置信区间,所有这些预测对于临床医生能够在临床实践中采用这种工具至关重要。

SleepioTM is a digital mobile phone and web platform that uses techniques from cognitive behavioural therapy (CBT) to improve sleep in people with sleep difficulty. As part of this process, Sleepio captures data about the sleep behaviour of the users that have consented to such data being processed. For neural networks, the scale of the data is an opportunity to train meaningful models translatable to actual clinical practice. In collaboration with Big Health, the therapeutics company that created and utilizes Sleepio, we have analysed data from a random sample of 401,174 sleep diaries and built a neural network to model sleep behaviour and sleep quality of each individual in a personalised manner. We demonstrate that this neural network is more accurate than standard statistical methods in predicting the sleep quality of an individual based on his/her behaviour from the last 10 days. We compare model performance in a wide range of hyperparameter settings representing various scenarios. We further show that the neural network can be used to produce personalised recommendations of what sleep habits users should follow to maximise sleep quality, and show that these recommendations are substantially better than the ones generated by standard methods. We finally show that the neural network can explain the recommendation given to each participant and calculate confidence intervals for each prediction, all of which are essential for clinicians to be able to adopt such a tool in clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源