论文标题

连接的还原产品

Connected Reduced Products

论文作者

Kurilić, Miloš S.

论文摘要

如果$ρ$是集合$ x $的二进制关系,则结构$ {\ mathbb x} = \ langle x,如果将包含$ρ$的最小值的关系连接到$ x $的完全关系,则连接了ρ\ rangle $。我们表明,对于一套$ i $,以下条件是等效的 (a)$ | i | $小于第一个可测量的红衣主教 (b)对于每个过滤器$φ\ subset p(i)$和每个家庭$ \ {{\ mathbb x} _i:i \ in i \} $的二进制结构,还原产品$ \prod_φ{\prod_φ{\ mathbb x} _i $是连接的,如果连接了$ k \ s $ k \ s $ k \ subset,in $ {\ mathbb x} _i $是连接的,对于k $中的每个$ i \,以及$ \ {i \ in i:{\ mathbb x} _i \ mbox {是直径} \ leq n \ leq n \} (c)超副果$ \ prod _ {\ mathcal u} {\ mathbb g}_Ω$是每个非主要超级超级滤波器$ {\ mathcal u} \ subset p(i)$ {$ {\ mathbb g} _的$ umem $ $ $ goum的$。 此外,(b)中的含义“ $ \ leftarrow $”包含在ZFC中。

If $ρ$ is a binary relation on a set $X$, the structure ${\mathbb X}=\langle X,ρ\rangle$ is connected iff the minimal equivalence relation containing $ρ$ is the full relation on $X$. We show that, for a set $I$ the following conditions are equivalent (a) $|I|$ is less than the first measurable cardinal, (b) For each filter $Φ\subset P(I)$ and each family $\{ {\mathbb X}_i :i\in I\}$ of binary structures, the reduced product $\prod_Φ{\mathbb X}_i$ is connected, iff there are a finite set $K\subset I$ and $n\in ω$ such that ${\mathbb X}_i$ is connected, for each $i\in K$, and $\{ i\in I: {\mathbb X}_i \mbox{ is of diameter }\leq n\}\cup K\in Φ$, (c)The ultraproduct $\prod_{\mathcal U}{\mathbb G}_ω$ is a disconnected graph for each non-principal ultrafilter ${\mathcal U}\subset P(I)$, where ${\mathbb G}_ω$ is the linear graph on $ω$. Moreover, the implication "$\Leftarrow$" in (b) holds in ZFC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源