论文标题
在存在异常值的情况下,可用于SAR图像处理的强大瑞利回归方法
Robust Rayleigh Regression Method for SAR Image Processing in Presence of Outliers
论文作者
论文摘要
合成孔径雷达(SAR)数据中异常值(异常值)的存在以及统计图像模型中的错误指定可能导致推断不准确。为了避免此类问题,提出了基于强大的估计过程的瑞利回归模型,作为模拟此类数据的更现实的方法。本文旨在获得瑞利回归模型参数估计器与异常值的存在。提出的方法考虑了加权最大似然法,并使用模拟和测量的SAR图像提交了数值实验。蒙特卡洛模拟用于对有限信号长度,对异常值的敏感性和分解点的稳健估计器性能进行数值评估。例如,非稳定估计器显示相对偏置值$ 65 $倍,比损坏信号中强大方法提供的结果大。在灵敏度分析和分解点方面,强大的方案使两种措施的平均绝对价值分别减少了约96美元\%$ $和$ 10 \%$,同意对非固定估计器的同情。此外,使用两个SAR数据集比较了拟议的鲁棒方案的地面类型和异常检测结果与文献中的竞争方法。
The presence of outliers (anomalous values) in synthetic aperture radar (SAR) data and the misspecification in statistical image models may result in inaccurate inferences. To avoid such issues, the Rayleigh regression model based on a robust estimation process is proposed as a more realistic approach to model this type of data. This paper aims at obtaining Rayleigh regression model parameter estimators robust to the presence of outliers. The proposed approach considered the weighted maximum likelihood method and was submitted to numerical experiments using simulated and measured SAR images. Monte Carlo simulations were employed for the numerical assessment of the proposed robust estimator performance in finite signal lengths, their sensitivity to outliers, and the breakdown point. For instance, the non-robust estimators show a relative bias value $65$-fold larger than the results provided by the robust approach in corrupted signals. In terms of sensitivity analysis and break down point, the robust scheme resulted in a reduction of about $96\%$ and $10\%$, respectively, in the mean absolute value of both measures, in compassion to the non-robust estimators. Moreover, two SAR data sets were used to compare the ground type and anomaly detection results of the proposed robust scheme with competing methods in the literature.