论文标题

使用激光点云进行合作感知的自适应特征融合

Adaptive Feature Fusion for Cooperative Perception using LiDAR Point Clouds

论文作者

Qiao, Donghao, Zulkernine, Farhana

论文摘要

合作感允许连接的自动驾驶汽车(CAV)与附近其他骑士相互作用,以增强对周围物体的感知以提高安全性和可靠性。它可以弥补常规车辆感知的局限性,例如盲点,低分辨率和天气影响。合作感知中间融合方法的有效特征融合模型可以改善特征选择和信息聚集,以进一步提高感知精度。我们建议具有可训练的特征选择模块的自适应特征融合模型。我们提出的模型之一的空间自适应特征融合(S-Adafusion)在OPV2V数据集的两个子集上优于所有其他最先进的(SOTA):默认的Carla Towns用于车辆检测和Culver City用于域名适应。此外,以前的研究仅测试了合作感的车辆检测。但是,行人在交通事故中更有可能受到重伤。我们使用CODD数据集评估了车辆和行人检测的合作感的性能。与CODD数据集中的车辆和行人检测相比,我们的架构达到的平均精度(AP)高。实验表明,与常规的单车感知过程相比,合作感也提高了行人检测准确性。

Cooperative perception allows a Connected Autonomous Vehicle (CAV) to interact with the other CAVs in the vicinity to enhance perception of surrounding objects to increase safety and reliability. It can compensate for the limitations of the conventional vehicular perception such as blind spots, low resolution, and weather effects. An effective feature fusion model for the intermediate fusion methods of cooperative perception can improve feature selection and information aggregation to further enhance the perception accuracy. We propose adaptive feature fusion models with trainable feature selection modules. One of our proposed models Spatial-wise Adaptive feature Fusion (S-AdaFusion) outperforms all other State-of-the-Arts (SOTAs) on two subsets of the OPV2V dataset: Default CARLA Towns for vehicle detection and the Culver City for domain adaptation. In addition, previous studies have only tested cooperative perception for vehicle detection. A pedestrian, however, is much more likely to be seriously injured in a traffic accident. We evaluate the performance of cooperative perception for both vehicle and pedestrian detection using the CODD dataset. Our architecture achieves higher Average Precision (AP) than other existing models for both vehicle and pedestrian detection on the CODD dataset. The experiments demonstrate that cooperative perception also improves the pedestrian detection accuracy compared to the conventional single vehicle perception process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源