论文标题

随机图的独立数的两点浓度

Two-Point Concentration of the Independence Number of the Random Graph

论文作者

Bohman, Tom, Hofstad, Jakob

论文摘要

我们表明,如果$ n^{ - 2/3+ε} <p \ le 1 $,$ g_ {n,p} $的独立数集中在两个值上。当SAH和Sawhney的参数表明独立号通常不集中于$ p = o \ left的2个值(((\ log(n)/n)/n)^{2/3} \ right)$的2个值。 $ g_ {n,p} $的独立性浓度的程度,对于$ω(1/n)<p \ le n^{ - 2/3} $仍然是一个有趣的开放问题。

We show that the independence number of $ G_{n,p}$ is concentrated on two values if $ n^{-2/3+ ε} < p \le 1$. This result is roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general, concentrated on 2 values for $ p = o \left( (\log(n)/n)^{2/3} \right)$. The extent of concentration of the independence number of $ G_{n,p}$ for $ ω(1/n) <p \le n^{-2/3}$ remains an interesting open question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源